Table of Contents

1. **Introduction**

2. **Neural Networks**

3. **The Neural Network Verification Problem**

4. **State-of-the-Art Verification Techniques**

5. **Reluplex**

6. **Summary**
Background

Software systems are everywhere. Phones, airplanes, hospitals. Complexity is increasing. Autonomous driving. Manually creating software is very difficult.
Background

- Software systems are everywhere
 - Phones, airplanes, hospitals
Background

- Software systems are everywhere
 - Phones, airplanes, hospitals
- Complexity is increasing
 - Autonomous driving
Software systems are everywhere
- Phones, airplanes, hospitals

Complexity is increasing
- Autonomous driving

Manually creating software is very difficult
Machine Learning to the Rescue

Image recognition, game playing, autonomous driving, etc.

Guy Katz (HUJI)
Machine Learning to the Rescue

Requirements → Input/Output Pairs → Machine Learning Algorithm → Artifact
Machine Learning to the Rescue

- Image recognition, game playing, autonomous driving, etc.
Can Things go Wrong?

Black-box artifacts are useful. Technology is accessible to non-experts. But their opaqueness can be dangerous. Traditional quality-assurance techniques do not apply. Code reviews? Refactoring? Invariants? How do we know what is going on inside the black box?
Can Things go Wrong?

- Black-box artifacts are useful
Can Things go Wrong?

- Black-box artifacts are useful
 - Technology is accessible to non-experts
Can Things go Wrong?

- Black-box artifacts are useful
 - Technology is accessible to non-experts
- But their opaqueness can be dangerous
Can Things go Wrong?

- Black-box artifacts are useful
 - Technology is accessible to non-experts

- But their opaqueness can be dangerous

- Traditional quality-assurance techniques do not apply
Can Things go Wrong?

- Black-box artifacts are useful
 - Technology is accessible to non-experts
- But their opaqueness can be dangerous
- Traditional quality-assurance techniques do not apply
 - Code reviews? Refactoring? Invariants?
Can Things go Wrong?

- Black-box artifacts are useful
 - Technology is accessible to non-experts
- But their opaqueness can be dangerous
- Traditional quality-assurance techniques do not apply
 - Code reviews? Refactoring? Invariants?
- How do we know what is going on inside the black box?
When Things go Wrong...
The ACAS Xu System

An Airborne Collision-Avoidance System, for drones

Being developed by the US Federal Aviation Administration

Produce an advisory:

Clear-of-conflict (COC)

Strong left

Weak left

Strong right

Weak right

Ownship v_{own}

Intruder v_{int}

ρ

ψ

θ
An *Airborne Collision-Avoidance System*, for drones
The ACAS Xu System

- An *Airborne Collision-Avoidance System*, for drones
- Being developed by the US Federal Aviation Administration (FAA)
The ACAS Xu System

- An *Airborne Collision-Avoidance System*, for drones
- Being developed by the US Federal Aviation Administration (FAA)
- Produce an advisory:
 - *Clear-of-conflict (COC)*
 - *Strong left*
 - *Weak left*
 - *Strong right*
 - *Weak right*
The ACAS Xu System (cnt’d)

ACAS Xu logic too complex for manual implementation

Previous approach: large lookup table (size: 2GB)

Interpolate if needed

Switched to neural networks for compression (size: 3MB)

Also smoother than interpolation

But this requires a new certification procedure

Especially because this is a new approach
ACAS Xu logic *too complex* for manual implementation
ACAS Xu logic *too complex* for manual implementation

Previous approach: large lookup table (size: 2GB)
ACAS Xu logic too complex for manual implementation

Previous approach: large lookup table (size: 2GB)
 Interpolate if needed

Switched to neural networks for compression (size: 3MB)
Also smoother than interpolation
But this requires a new certification especially because this is a new approach
The ACAS Xu System (cnt’d)

- ACAS Xu logic *too complex* for manual implementation
- Previous approach: large lookup table (size: 2GB)
 - Interpolate if needed
- Switched to neural networks for *compression* (size: 3MB)
ACAS Xu logic *too complex* for manual implementation

Previous approach: large lookup table (size: 2GB)
 - Interpolate if needed

Switched to neural networks for *compression* (size: 3MB)
 - Also smoother than interpolation
ACAS Xu logic *too complex* for manual implementation

Previous approach: large lookup table (size: 2GB)
 - Interpolate if needed

Switched to neural networks for *compression* (size: 3MB)
 - Also smoother than interpolation

But this requires a new *certification* procedure
ACAS Xu logic too complex for manual implementation

Previous approach: large lookup table (size: 2GB)
 - Interpolate if needed

Switched to neural networks for compression (size: 3MB)
 - Also smoother than interpolation

But this requires a new certification procedure
 - Especially because this is a new approach
The ACAS Xu System (cnt’d)

Certification via testing and simulation

Encounter plots

But these only cover a finite set of inputs

Verification can help

Guy Katz (HUJI)
Certification via testing and simulation
Certification via testing and simulation

Encounter plots
The ACAS Xu System (cnt’d)

- Certification via testing and simulation
- *Encounter plots*
Certification via testing and simulation

Encounter plots

But these only cover a finite set of inputs
Certification via testing and simulation

Encounter plots

But these only cover a finite set of inputs
 - Verification can help
Verification

Given program P and property φ, does P satisfy φ?

Option 1: prove that property φ holds
Option 2: provide a counter-example showing that it does not

Stronger guarantees than testing: holds for any possible input
Not just a finite set that was tested
But, computational cost much higher
Given program P and property φ, does P satisfy φ?
Given program P and property φ, does P satisfy φ?

- Option 1: *prove* that property φ holds

Stronger guarantees than testing: holds for any possible input
Not just a finite set that was tested
But, computational cost much higher
Verification

- Given program P and property φ, does P satisfy φ?
 - Option 1: prove that property φ holds
 - Option 2: provide a counter-example showing that it does not
Given program P and property φ, does P satisfy φ?

- Option 1: prove that property φ holds
- Option 2: provide a counter-example showing that it does not

Stronger guarantees than testing: holds for any possible input
Verification

Given program P and property φ, does P satisfy φ?
- Option 1: prove that property φ holds
- Option 2: provide a counter-example showing that it does not

Stronger guarantees than testing: holds for any possible input
- Not just a finite set that was tested
Verification

- Given program P and property φ, does P satisfy φ?
 - Option 1: prove that property φ holds
 - Option 2: provide a counter-example showing that it does not

- Stronger guarantees than testing: holds for any possible input
 - Not just a finite set that was tested

- But, computational cost much higher
A lot of work on "traditional" systems

Handling common software constructs (e.g., loops, conditions)

Figuring out the properties to check (e.g., no array overflows)

Also, plenty of work on improving scalability

Need to figure this things out for ML-generated software

Is it worth the effort?

Yes, especially for safety-critical systems (like ACAS Xu)
A lot of work on “traditional” systems
A lot of work on “traditional” systems
- Handling common software constructs (e.g., loops, conditions)

Is it worth the effort?
Yes, especially for safety-critical systems (like ACAS Xu)
A lot of work on “traditional” systems

- Handling common software constructs (e.g., loops, conditions)
- Figuring out the properties to check (e.g., no array overflows)

Is it worth the effort? Yes, especially for safety-critical systems (like ACAS Xu)
A lot of work on “traditional” systems
- Handling common software constructs (e.g., loops, conditions)
- Figuring out the properties to check (e.g., no array overflows)

Also, plenty of work on improving scalability
A lot of work on “traditional” systems
 Handling common software constructs (e.g., loops, conditions)
 Figuring out the properties to check (e.g., no array overflows)

Also, plenty of work on improving scalability

Need to figure this things out for ML-generated software
A lot of work on “traditional” systems
 - Handling common software constructs (e.g., loops, conditions)
 - Figuring out the properties to check (e.g., no array overflows)

Also, plenty of work on improving scalability

Need to figure this things out for ML-generated software

Is it worth the effort?
A lot of work on “traditional” systems
- Handling common software constructs (e.g., loops, conditions)
- Figuring out the properties to check (e.g., no array overflows)

Also, plenty of work on improving scalability

Need to figure this things out for ML-generated software

Is it worth the effort?
- Yes, especially for safety-critical systems (like ACAS Xu)
Adversarial Inputs

In 2014, an intriguing property was observed: Small perturbations of inputs lead to misclassification. Can usually find such inputs very easily.

Guy Katz (HUJI)
In 2014, an intriguing property was observed:
In 2014, an intriguing property was observed: Small perturbations of inputs lead to misclassification. Can usually find such inputs very easily.

Goodfellow et al., 2015

“panda” 57.7% confidence + $\epsilon \times$ = “gibbon” 99.3% confidence
Adversarial Inputs

In 2014, an intriguing property was observed:

Small perturbations of inputs lead to misclassification

Goodfellow et al., 2015
Adversarial Inputs

- In 2014, an intriguing property was observed:

 \[\text{“panda” } \quad 57.7\% \text{ confidence} \]

 \[+ \epsilon \times \quad \text{noise} \quad = \quad \text{“gibbon” } \quad 99.3\% \text{ confidence} \]

- Small perturbations of inputs lead to misclassification
- Can usually find such inputs very easily

Goodfellow et al., 2015
Adversarial Inputs (cnt’d)

Another example:

Guy Katz (HUJI)
Another example:
Another example:

Traffic Light + 11 White Pixels = Kitchen Oven
Even worse: can cause misclassification to a specific (targeted) input. Attacks can be carried out in the real world. Dangers: Natural malformation of input. Adversary changes “stop” sign into a “entering highway” sign?
Adversarial Inputs (cnt’d)

• Even worse: can cause misclassification to a specific (targeted) input
Even worse: can cause misclassification to a specific (targeted) input

Attacks can be carried out in the real world
Adversarial Inputs (cnt’d)

- Even worse: can cause misclassification to a specific (targeted) input
- Attacks can be carried out in the real world
- Dangers:
Even worse: can cause misclassification to a specific (targeted) input

Attacks can be carried out in the real world

Dangers:
- Natural malformation of input
Adversarial Inputs (cnt’d)

- Even worse: can cause misclassification to a specific (*targeted*) input
- Attacks can be carried out in the *real world*
- Dangers:
 - Natural malformation of input
 - Adversary changes “stop” sign into a “entering highway” sign?
Adversarial Robustness

A network’s resilience to adversarial attacks is called adversarial robustness. There exist hardening techniques for increasing robustness. But these usually defend against existing attacks and then a new attack breaks them. Verification can be used to establish robustness guarantees.
A network’s resilience to adversarial attacks is called \textit{adversarial robustness}.
A network’s resilience to adversarial attacks is called \textit{adversarial robustness}.

There exist hardening techniques for increasing robustness.
A network’s resilience to adversarial attacks is called \textit{adversarial robustness}.

There exist hardening techniques for increasing robustness.

But...
A network’s resilience to adversarial attacks is called *adversarial robustness*

There exist hardening techniques for increasing robustness

But...

- These usually defend against *existing* attacks
A network’s resilience to adversarial attacks is called adversarial robustness.

There exist hardening techniques for increasing robustness.

But...

- These usually defend against existing attacks.
- And then a new attack breaks them.
A network’s resilience to adversarial attacks is called *adversarial robustness*

There exist hardening techniques for increasing robustness

But...

- These usually defend against *existing* attacks
- And then a *new* attack breaks them

Verification can be used to establish robustness *guarantees*
Roadmap

- Machine-learned software becoming widespread
- Problems with these systems already observed
- Certification is a new and significant challenge

Up next:
- See why neural network verification is hard
- Survey state-of-the-art verification techniques
- Discuss one technique (Reluplex) in more detail
Roadmap

- Machine-learned software becoming widespread
Roadmap

- Machine-learned software becoming widespread
- Problems with these systems already observed
Roadmap

- Machine-learned software becoming widespread
- Problems with these systems already observed
- Certification is a new and significant challenge
Roadmap

- Machine-learned software becoming widespread
- Problems with these systems already observed
- Certification is a new and significant challenge

Up next:

1. See why neural network verification is hard
2. Survey state-of-the-art verification techniques
3. Discuss one technique (Reluplex) in more detail
Roadmap

- Machine-learned software becoming widespread
- Problems with these systems already observed
- Certification is a new and significant challenge

Up next:

- We will focus on neural networks, and will:

Guy Katz (HUJI)
Verification of ML
UnRAVeL 2019
Roadmap

- Machine-learned software becoming widespread
- Problems with these systems already observed
- Certification is a new and significant challenge

Up next:

We will focus on neural networks, and will:

1. See why neural network verification is hard
Roadmap

- Machine-learned software becoming widespread
- Problems with these systems already observed
- Certification is a new and significant challenge

Up next:

We will focus on neural networks, and will:
1. See why neural network verification is hard
2. Survey state-of-the-art verification techniques
Roadmap

- Machine-learned software becoming widespread
- Problems with these systems already observed
- Certification is a new and significant challenge

Up next:

We will focus on neural networks, and will:

1. See why neural network verification is hard
2. Survey state-of-the-art verification techniques
3. Discuss one technique (Reluplex) in more detail
Table of Contents

1. Introduction
2. Neural Networks
3. The Neural Network Verification Problem
4. State-of-the-Art Verification Techniques
5. Reluplex
6. Summary
Neural Networks

Typical sizes (number of neurons): between few hundreds and millions
Typical sizes (number of neurons): between few hundreds and millions
Neural Networks (cnt’d)

First layer is the input layer. In ACAS Xu example: sensor readings.

Final layer is the output layer. In ACAS Xu example: scores for possible advisories.

All other layers are called hidden layers.

Each edge is assigned a weight, and these define the network’s behavior.
First layer is the *input* layer
Neural Networks (cnt’d)

- First layer is the *input* layer
 - In ACAS Xu example: sensor readings
Neural Networks (cnt’d)

- First layer is the *input* layer
 - In ACAS Xu example: sensor readings
- Final layer is the *output* layer
First layer is the *input* layer
- In ACAS Xu example: sensor readings

Final layer is the *output* layer
- In ACAS Xu example: scores for possible advisories
First layer is the *input* layer
- In ACAS Xu example: sensor readings

Final layer is the *output* layer
- In ACAS Xu example: scores for possible advisories

All other layers are called *hidden* layers
First layer is the *input* layer
- In ACAS Xu example: sensor readings

Final layer is the *output* layer
- In ACAS Xu example: scores for possible advisories

- All other layers are called *hidden* layers
- Each edge is assigned a *weight*, and these define the network’s behavior
Training Neural Networks

Weights are determined during the training phase: A network is trained on a finite set of inputs... and then expected to generalize to other inputs. Training is about picking good weights: If the network errs, change weights to correct that behavior. Topic of much research, well beyond our scope. We assume that the network has already been trained.
Weights are determined during the *training* phase:
Training Neural Networks

- Weights are determined during the *training* phase:
 - A network is trained on a *finite* set of inputs
Weights are determined during the *training* phase:
- A network is trained on a *finite* set of inputs
- ... and then expected to generalize to other inputs
Weights are determined during the training phase:
- A network is trained on a finite set of inputs
- ... and then expected to generalize to other inputs

Training is about picking good weights:
Weights are determined during the *training* phase:
- A network is trained on a *finite* set of inputs
- ... and then expected to generalize to other inputs

Training is about picking good weights:
- If the network errs, change weights to correct that behavior
Weights are determined during the *training* phase:
- A network is trained on a *finite* set of inputs
- ... and then expected to generalize to other inputs

Training is about picking good weights:
- If the network errs, change weights to correct that behavior
- Topic of much research, well beyond our scope
Training Neural Networks

- Weights are determined during the *training* phase:
 - A network is trained on a *finite* set of inputs
 - ... and then expected to generalize to other inputs

- Training is about picking good weights:
 - If the network errs, change weights to correct that behavior
 - Topic of much research, well beyond our scope

- We assume that the network has already been trained
Evaluating Neural Networks

Nodes evaluated layer by layer:

- Input layer is given
- Every layer computed from its predecessor, according to weights and activation functions

Guy Katz (HUJI)

Verification of ML

UnRAVeL 2019
Nodes evaluated layer by layer:
Evaluating Neural Networks

- Nodes evaluated layer by layer:
 - Input layer is given
Evaluating Neural Networks

- Nodes evaluated layer by layer:
 - Input layer is given
 - Every layer computed from its predecessor, according to weights and activation functions
Evaluating Neural Networks

- Nodes evaluated layer by layer:
 - Input layer is given
 - Every layer computed from its predecessor, according to *weights* and *activation functions*

![Diagram of neural network nodes and weights](image.png)
Evaluating Neural Networks

- Nodes evaluated layer by layer:
 - Input layer is given
 - Every layer computed from its predecessor, according to weights and activation functions

\[
v_4 = \left(\sum_{i=1}^{3} w_i \cdot v_i \right)
\]

Guy Katz (HUJI)
Evaluating Neural Networks

- Nodes evaluated layer by layer:
 - Input layer is given
 - Every layer computed from its predecessor, according to weights and activation functions

\[v_4 = f\left(\sum_{i=1}^{3} w_i \cdot v_i \right) \]
Activation Functions

Rectified Linear Unit (ReLU): $f(x) = \max(x, 0)$

Active phase: $x \geq 0$, output is x.
Inactive phase: $x < 0$, output is 0.
Activation Functions

Rectified Linear Unit (ReLU):
\[f(x) = \max(x, 0) \]

- **Active phase:** \(x \geq 0 \), output is \(x \)
- **Inactive phase:** \(x < 0 \), output is 0
Rectified Linear Unit (ReLU): $f(x) = \max(x, 0)$
Rectified Linear Unit (ReLU): \(f(x) = \max(x, 0) \)

- **Active** phase: \(x \geq 0 \), output is \(x \)
Rectified Linear Unit (ReLU): $f(x) = \max(x, 0)$

- **Active phase**: $x \geq 0$, output is x
Rectified Linear Unit (ReLU): \(f(x) = \max(x, 0) \)

- Active phase: \(x \geq 0 \), output is \(x \)
- Inactive phase: \(x < 0 \), output is 0

\[
0 \cdot 1 + 2 \cdot 2 + 3 \cdot (-1) = 1
\]
Rectified Linear Unit (ReLU): $f(x) = \max(x, 0)$

- **Active** phase: $x \geq 0$, output is x
- $0 \cdot 1 + 2 \cdot 2 + 3 \cdot (-1) = 1$
Rectified Linear Unit (ReLU): $f(x) = \max(x, 0)$

- **Active** phase: $x \geq 0$, output is x
Rectified Linear Unit (ReLU): \(f(x) = \max(x, 0) \)

- **Active** phase: \(x \geq 0 \), output is \(x \)
- **Inactive** phase: \(x < 0 \), output is 0.
Rectified Linear Unit (ReLU): \(f(x) = \max(x, 0) \)

- **Active** phase: \(x \geq 0 \), output is \(x \)
- **Inactive** phase: \(x < 0 \), output is 0.
Activation Functions

Rectified Linear Unit (ReLU): \(f(x) = \max(x, 0) \)

- **Active** phase: \(x \geq 0 \), output is \(x \)
- **Inactive** phase: \(x < 0 \), output is 0.

\[
1 \cdot 1 + 0 \cdot 2 + 3 \cdot (-1) = -2
\]
Rectified Linear Unit (ReLU): $f(x) = \max(x, 0)$

- **Active** phase: $x \geq 0$, output is x
- **Inactive** phase: $x < 0$, output is 0.

\[1 \cdot 1 + 0 \cdot 2 + 3 \cdot (-1) = -2 \]
Pooling layers:

Max pooling:
$$f(x_1, ..., x_n) = \max(x_1, ..., x_n)$$

Average pooling:
$$f(x_1, ..., x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Sigmoid function:
$$f(x) = \frac{1}{1 + e^{-x}}$$

Hyperbolic tangent function:
$$f(x) = \tanh(x)$$
Pooling layers:

- Max pooling:
 \[f(x_1, \ldots, x_n) = \max(x_1, \ldots, x_n) \]

- Average pooling:
 \[f(x_1, \ldots, x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i \]

- Sigmoid function:
 \[f(x) = \frac{1}{1 + e^{-x}} \]

- Hyperbolic tangent function:
 \[f(x) = \tanh(x) \]
Activation Functions (cnt’d)

- Pooling layers:
 - Max pooling: \(f(x_1, \ldots, x_n) = \max(x_1, \ldots, x_n) \)
Activation Functions (cnt’d)

Pool layers:
- Max pooling: $f(x_1, \ldots, x_n) = \max(x_1, \ldots, x_n)$
- Average pooling: $f(x_1, \ldots, x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$
Pooling layers:

- Max pooling: \(f(x_1, \ldots, x_n) = \max(x_1, \ldots, x_n) \)
- Average pooling: \(f(x_1, \ldots, x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i \)

- Sigmoid function: \(f(x) = \frac{1}{1+e^{-x}} \)
Activation Functions (cnt’d)

- **Pooling layers:**
 - Max pooling: \(f(x_1, \ldots, x_n) = \max(x_1, \ldots, x_n) \)
 - Average pooling: \(f(x_1, \ldots, x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i \)

- **Sigmoid function:** \(f(x) = \frac{1}{1+e^{-x}} \)

- **Hyperbolic tangent function:** \(f(x) = \tanh(x) \)
1. Introduction

2. Neural Networks

3. The Neural Network Verification Problem

4. State-of-the-Art Verification Techniques

5. Reluplex

6. Summary
Neural Network Verification

Definition (The Neural Network Verification Problem)
For a neural network \(\mathcal{N} : \bar{x} \rightarrow \bar{y} \), an input property \(P(\bar{x}) \) and an output property \(Q(\bar{y}) \), does there exist an input \(\bar{x}_0 \) with output \(\bar{y}_0 = \mathcal{N}(\bar{x}_0) \), such that \(\bar{x}_0 \) satisfies \(P \) and \(\bar{y}_0 \) satisfies \(Q \)?

\(P(\bar{x}) \) characterizes the inputs we are checking
\(Q(\bar{y}) \) characterizes undesired behavior for those inputs
Negative answer (\(UNSAT \)) means property holds
Positive answer (\(SAT \)) includes a counterexample
Definition (The Neural Network Verification Problem)

For a neural network $N : \bar{x} \rightarrow \bar{y}$, an input property $P(\bar{x})$ and an output property $Q(\bar{y})$, does there exist an input \bar{x}_0 with output $\bar{y}_0 = N(\bar{x}_0)$, such that \bar{x}_0 satisfies P and \bar{y}_0 satisfies Q?
Definition (The Neural Network Verification Problem)

For a neural network $N : \bar{x} \rightarrow \bar{y}$, an input property $P(\bar{x})$ and an output property $Q(\bar{y})$, does there exist an input \bar{x}_0 with output $\bar{y}_0 = N(\bar{x}_0)$, such that \bar{x}_0 satisfies P and \bar{y}_0 satisfies Q?

- $P(\bar{x})$ characterizes the inputs we are checking
Definition (The Neural Network Verification Problem)

For a neural network \(N : \bar{x} \rightarrow \bar{y} \), an input property \(P(\bar{x}) \) and an output property \(Q(\bar{y}) \), does there exist an input \(\bar{x}_0 \) with output \(\bar{y}_0 = N(\bar{x}_0) \), such that \(\bar{x}_0 \) satisfies \(P \) and \(\bar{y}_0 \) satisfies \(Q \)?

- \(P(\bar{x}) \) characterizes the inputs we are checking
- \(Q(\bar{y}) \) characterizes \textit{undesired} behavior for those inputs
Neural Network Verification

Definition (The Neural Network Verification Problem)
For a neural network $N : \bar{x} \rightarrow \bar{y}$, an input property $P(\bar{x})$ and an output property $Q(\bar{y})$, does there exist an input \bar{x}_0 with output $\bar{y}_0 = N(\bar{x}_0)$, such that \bar{x}_0 satisfies P and \bar{y}_0 satisfies Q?

- $P(\bar{x})$ characterizes the inputs we are checking
- $Q(\bar{y})$ characterizes undesired behavior for those inputs
- Negative answer (UNSAT) means property holds
Neural Network Verification

Definition (The Neural Network Verification Problem)

For a neural network \(N : \bar{x} \rightarrow \bar{y} \), an input property \(P(\bar{x}) \) and an output property \(Q(\bar{y}) \), does there exist an input \(\bar{x}_0 \) with output \(\bar{y}_0 = N(\bar{x}_0) \), such that \(\bar{x}_0 \) satisfies \(P \) and \(\bar{y}_0 \) satisfies \(Q \)?

- \(P(\bar{x}) \) characterizes the inputs we are checking
- \(Q(\bar{y}) \) characterizes \textit{undesired} behavior for those inputs
- Negative answer (UNSAT) means property \textit{holds}
- Positive answer (SAT) includes a \textit{counterexample}
Example: ACAS Xu

\[\bar{x}[0] \geq 40000\]

\[\bar{y}[0] \leq \bar{y}[1] \lor \bar{y}[0] \leq \bar{y}[2] \lor \bar{y}[0] \leq \bar{y}[3] \lor \bar{y}[0] \leq \bar{y}[4]\]

UNSAT means the system behaves as expected
Example: ACAS Xu

- Want to ensure: whenever intruder is distant, network always answers *clear-of-conflict*
Example: ACAS Xu

- Want to ensure: whenever intruder is distant, network always answers *clear-of-conflict*
- $P(\bar{x})$:

\[\bar{x}^0 \geq 40000 \]
\[\bar{y}^0 \leq \bar{y}^1 \lor \bar{y}^0 \leq \bar{y}^2 \lor \bar{y}^0 \leq \bar{y}^3 \lor \bar{y}^0 \leq \bar{y}^4 \]

UNSAT means the system behaves as expected
Example: ACAS Xu

- Want to ensure: whenever intruder is distant, network always answers *clear-of-conflict*

- \(P(\bar{x}):\)
 - \(\bar{x}[0] \geq 40000 \)
Example: ACAS Xu

- Want to ensure: whenever intruder is distant, network always answers *clear-of-conflict*

 - $P(\bar{x})$:
 - $\bar{x}[0] \geq 40000$

 - $Q(\bar{y})$:

UNSAT means the system behaves as expected
Example: ACAS Xu

- Want to ensure: whenever intruder is distant, network always answers *clear-of-conflict*

\[P(\bar{x}): \]
\[\bar{x}[0] \geq 40000 \]

\[Q(\bar{y}): \]
\[(\bar{y}[0] \leq \bar{y}[1]) \lor (\bar{y}[0] \leq \bar{y}[2]) \lor (\bar{y}[0] \leq \bar{y}[3]) \lor (\bar{y}[0] \leq \bar{y}[4]) \]

UNSAT means the system behaves as expected.
Example: ACAS Xu

- Want to ensure: whenever intruder is distant, network always answers *clear-of-conflict*

- $P(\bar{x})$:
 - $\bar{x}[0] \geq 40000$

- $Q(\bar{y})$:
 - $(\bar{y}[0] \leq \bar{y}[1]) \lor (\bar{y}[0] \leq \bar{y}[2]) \lor (\bar{y}[0] \leq \bar{y}[3]) \lor (\bar{y}[0] \leq \bar{y}[4])$

- UNSAT means the system behaves as expected
Example: Adversarial Robustness

Want to ensure: for a given input \bar{x}_0 and a given amount of noise δ, classification remains the same $P(\bar{x})$:

$$\|\bar{x} - \bar{x}_0\|_{L_\infty} \leq \delta$$

Equivalent to:

$$\bigwedge_i (-\delta \leq \bar{x}[i] - \bar{x}_0[i] \leq \delta)$$

$Q(\bar{y})$: $\bigvee_i (\bar{y}[i]_0 \leq \bar{y}[i])$, where $\bar{y}[i]_0$ is the desired label

UNSAT means the system behaves as expected
Example: Adversarial Robustness

- Want to ensure: for a given input \bar{x}_0 and a given amount of noise δ, classification remains the same.
Example: Adversarial Robustness

- Want to ensure: for a given input \bar{x}_0 and a given amount of noise δ, classification remains the same

$P(\bar{x})$:
Example: Adversarial Robustness

- Want to ensure: for a given input \bar{x}_0 and a given amount of noise δ, classification remains the same

- $P(\bar{x})$:
 - $\|\bar{x} - \bar{x}_0\|_{L_\infty} \leq \delta$
Example: Adversarial Robustness

- Want to ensure: for a given input \bar{x}_0 and a given amount of noise δ, classification remains the same

- $P(\bar{x})$:
 - $\|\bar{x} - \bar{x}_0\|_{L_\infty} \leq \delta$
 - Equivalent to: $\bigwedge_i (-\delta \leq \bar{x}[i] - \bar{x}_0[i] \leq \delta)$
Example: Adversarial Robustness

- Want to ensure: for a given input \bar{x}_0 and a given amount of noise δ, classification remains the same

- $P(\bar{x})$:
 - $\|\bar{x} - \bar{x}_0\|_{L_\infty} \leq \delta$
 - Equivalent to: $\bigwedge_i (-\delta \leq \bar{x}[i] - \bar{x}_0[i] \leq \delta)$

- $Q(\bar{y})$:
Example: Adversarial Robustness

- Want to ensure: for a given input \bar{x}_0 and a given amount of noise δ, classification remains the same

 $P(\bar{x})$:
 - $\|\bar{x} - \bar{x}_0\|_{L_\infty} \leq \delta$
 - Equivalent to: $\bigwedge_i (-\delta \leq \bar{x}[i] - \bar{x}_0[i] \leq \delta)$

 $Q(\bar{y})$:
 - $\bigvee_i (\bar{y}[i_0] \leq \bar{y}[i])$, where $\bar{y}[i_0]$ is the desired label
Example: Adversarial Robustness

- Want to ensure: for a given input \bar{x}_0 and a given amount of noise δ, classification remains the same

 \begin{itemize}
 \item $P(\bar{x})$:
 \begin{itemize}
 \item $\|\bar{x} - \bar{x}_0\|_{L_\infty} \leq \delta$
 \item Equivalent to: $\bigwedge_i (-\delta \leq \bar{x}[i] - \bar{x}_0[i] \leq \delta)$
 \end{itemize}
 \item $Q(\bar{y})$:
 \begin{itemize}
 \item $\bigvee_i (\bar{y}[i_0] \leq \bar{y}[i])$, where $\bar{y}[i_0]$ is the desired label
 \end{itemize}

- UNSAT means the system behaves as expected
Verification Complexity

Theorem (Neural Network Verification Complexity)

For a neural network with ReLU activation functions, and for properties $P()$ and $Q()$ that are conjunctions of linear constraints, the verification problem is NP-complete in the number of ReLU nodes.
Verification Complexity

Theorem (Neural Network Verification Complexity)

For a neural network with ReLU activation functions, and for properties $P()$ and $Q()$ that are conjunctions of linear constraints, the verification problem is NP-complete in the number of ReLU nodes.

- Membership in NP: can check in polynomial time that a given x satisfies $P(x)$ and $Q(N(x))$.
For a neural network with ReLU activation functions, and for properties $P()$ and $Q()$ that are conjunctions of linear constraints, the verification problem is NP-complete in the number of ReLU nodes.

- Membership in NP: can check in polynomial time that a given x satisfies $P(x)$ and $Q(N(x))$
- NP-Hardness: by reduction from 3-SAT
Boolean variables: x_1, \ldots, x_n

Input to 3-SAT:

$C_1 \land C_2 \land \ldots \land C_k$

Each clause C_i is $q_1^i \lor q_2^i \lor q_3^i$ where q_1^i, q_2^i, q_3^i are variables or their negations

Goal: find a variable assignment that satisfies the formula

We will construct an input to the verification problem that is satisfiable iff the formula is satisfiable.
Verification Complexity (cnt’d)

- Boolean variables: x_1, \ldots, x_n
Verification Complexity (cnt’d)

- Boolean variables: x_1, \ldots, x_n

- Input to 3-SAT: $C_1 \land C_2 \land \ldots \land C_k$

Each clause C_i is $q_{1i} \lor q_{2i} \lor q_{3i}$'s are variables or their negations

Goal: find a variable assignment that satisfies the formula
Verification Complexity (cnt’d)

- Boolean variables: x_1, \ldots, x_n
- Input to 3-SAT: $C_1 \land C_2 \land \ldots \land C_k$
- Each clause C_i is $q_i^1 \lor q_i^2 \lor q_i^3$
Verification Complexity (cnt’d)

- **Boolean variables**: \(x_1, \ldots, x_n \)
- **Input to 3-SAT**: \(C_1 \land C_2 \land \ldots \land C_k \)
- **Each clause** \(C_i \) is \(q^1_i \lor q^2_i \lor q^3_i \)
 - \(q \)'s are variables or their negations
Verification Complexity (cnt’d)

- **Boolean variables:** x_1, \ldots, x_n
- **Input to 3-SAT:** $C_1 \land C_2 \land \ldots \land C_k$
- **Each clause C_i is** $q_{i1} \lor q_{i2} \lor q_{i3}$
 - q’s are variables or their negations
- **Goal:** find a variable assignment that satisfies the formula
Verification Complexity (cnt’d)

- **Boolean variables:** x_1, \ldots, x_n

- **Input to 3-SAT:** $C_1 \land C_2 \land \ldots \land C_k$

- **Each clause C_i is:** $q_i^1 \lor q_i^2 \lor q_i^3$
 - q’s are variables or their negations

- **Goal:** find a variable assignment that satisfies the formula

- **We will construct an input to the verification problem that is satisfiable iff the formula is satisfiable**
Reduction: Handling Negations
Reduction: Handling Negations

- Equation: $q_i^j = \neg x_j$

Diagram:
- Node x_j connected to node q_i^j with a negation arrow.
- Node 1 connected to node q_i^j with a 1 arrow.
- Node 1 connected to node x_j with a 1 arrow.

Guy Katz (HUJI)
Reduction: Handling Negations

q^j_i gets $1 - x_j$, i.e. $q^j_i = \neg x_j$
Reduction: Handling Disjunctions

At least one input is 1: t_i is 0, y_i is 1. All inputs are 0: t_i is 1, y_i is 0. In other words: $y_i = q_1_i \lor q_2_i \lor q_3_i$.
At least one input is 1:

- t_i is 0, y_i is 1

All inputs are 0:

- t_i is 1, y_i is 0

In other words:

$$y_i = q_{i1}^1 \lor q_{i2}^2 \lor q_{i3}^3$$
At least one input is 1: t_i is 0, y_i is 1
Reduction: Handling Disjunctions

At least one input is 1: t_i is 0, y_i is 1

All inputs are 0: t_i is 1, y_i is 0
At least one input is 1: t_i is 0, y_i is 1

All inputs are 0: t_i is 1, y_i is 0

In other words: $y_i = q_i^1 \lor q_i^2 \lor q_i^3$
Reduction: Handling Conjunctions

We define the output property, \(Q(y) \), to be

\[y = n \]

This is satisfied only if all conjuncts are 1.
Reduction: Handling Conjunctions

$y_1 \rightarrow 1$

$\vdots \rightarrow 1$

$y_n \rightarrow y$

y is the final output of the network.

We define the output property, $Q(y)$, to be $y = n$. This is satisfied only if all conjuncts are 1.
Reduction: Handling Conjunctions

y is the final output of the network

We define the output property, $Q(y)$, to be $y = n$.
This is satisfied only if all conjuncts are 1.
Reduction: Handling Conjunctions

- y is the final output of the network
- We define the output property, $Q(y)$, to be $y = n$
Reduction: Handling Conjunctions

- y is the final output of the network
- We define the output property, $Q(y)$, to be $y = n$
- This is satisfied only if all conjuncts are 1
Reduction: Putting it all Together
Reduction: Putting it all Together

Input property $P(x)$:
$\forall i. x_i \in \{0, 1\}$

Output property $Q(y)$:
$y = n$

Verification property $\text{SAT} \iff$ original formula is SAT

Guy Katz (HUJI)
Verification of ML
UnRAVeL 2019 33 / 116
Input property $P(x): \forall i. \ x_i \in \{0, 1\}$
Input property $P(x)$: $\forall i. \ x_i \in \{0, 1\}$

Output property $Q(y)$: $y = n$
Input property $P(x)$: $\forall i. \ x_i \in \{0, 1\}$

Output property $Q(y)$: $y = n$

Verification property SAT iff original formula is SAT
Extending the Definition for \(P() \) and \(Q() \)

Corollary

The verification problem remains NP-complete if we allow \(P() \) and \(Q() \) to have arbitrary Boolean structure.

Proof: we add (polynomially many) nodes to handle disjunctions and negations. So, it is enough to solve just for conjunctions.
Corollary

The verification problem remains NP-complete if we allow \(P() \) and \(Q() \) to have arbitrary Boolean structure
Extending the Definition for P() and Q()

Corollary

The verification problem remains NP-complete if we allow $P()$ and $Q()$ to have arbitrary Boolean structure

Proof: we add (polynomially many) nodes to handle disjunctions and negations
Corollary

The verification problem remains NP-complete if we allow $P()$ and $Q()$ to have arbitrary Boolean structure

- Proof: we add (polynomially many) nodes to handle disjunctions and negations
- So, it is enough to solve just for conjunctions
Another Extension: Max-Pooling

ReLU is a piece-wise linear function
Max-Pooling is also piece-wise linear
Can express one in terms of the other:

$$\text{ReLU}(x) = \max(x, 0)$$

$$\max(x, y) = \text{ReLU}(x - y) + y$$

It is enough to solve just for ReLUs

Other piece-wise linear functions?
Non piece-wise linear functions?
Another Extension: Max-Pooling

- ReLU is a piece-wise linear function
Another Extension: Max-Pooling

- ReLU is a piece-wise linear function
- Max-Pooling is also piece-wise linear
Another Extension: Max-Pooling

- ReLU is a piece-wise linear function
- Max-Pooling is also piece-wise linear
- Can express one in terms of the other:

\[
\text{ReLU}(x) = \max(x, 0)
\]

\[
\max(x, y) = \text{ReLU}(x - y) + y
\]

It is enough to solve just for ReLUs

Other piece-wise linear functions?

Non piece-wise linear functions?
Another Extension: Max-Pooling

- ReLU is a piece-wise linear function
- Max-Pooling is also piece-wise linear
- Can express one in terms of the other:
 - \(\text{ReLU}(x) = \max(x, 0) \)
Another Extension: Max-Pooling

- ReLU is a piece-wise linear function
- Max-Pooling is also piece-wise linear
- Can express one in terms of the other:
 - $\text{ReLU}(x) = \max(x, 0)$
 - $\max(x, y) = \text{ReLU}(x - y) + y$
Another Extension: Max-Pooling

- ReLU is a piece-wise linear function
- Max-Pooling is also piece-wise linear
- Can express one in terms of the other:
 - \(\text{ReLU}(x) = \max(x, 0) \)
 - \(\max(x, y) = \text{ReLU}(x - y) + y \)
- It is enough to solve just for ReLUs
Another Extension: Max-Pooling

- ReLU is a piece-wise linear function
- Max-Pooling is also piece-wise linear
- Can express one in terms of the other:
 - \(\text{ReLU}(x) = \max(x, 0) \)
 - \(\max(x, y) = \text{ReLU}(x - y) + y \)
- It is enough to solve just for ReLUs
- Other piece-wise linear functions?
Another Extension: Max-Pooling

- ReLU is a piece-wise linear function
- Max-Pooling is also piece-wise linear
- Can express one in terms of the other:
 - \(\text{ReLU}(x) = \max(x, 0) \)
 - \(\max(x, y) = \text{ReLU}(x - y) + y \)
- It is enough to solve just for ReLUs
- Other piece-wise linear functions?
- Non piece-wise linear functions?
Neural network verification is hard NP-complete even for simple networks and properties. Real networks can be quite large. So what can we do?

Next, we will:
1. Survey state-of-the-art verification techniques
2. Discuss one such technique (Reluplex) in more detail
Neural network verification is *hard*
Neural network verification is \textit{hard}

- NP-complete even for simple networks and properties
Neural network verification is hard
- NP-complete even for simple networks and properties
- Real networks can be quite large
Roadmap

- Neural network verification is *hard*
 - NP-complete even for simple networks and properties
 - Real networks can be quite large
- So what can we do?
Roadmap

- Neural network verification is *hard*
 - NP-complete even for simple networks and properties
 - Real networks can be quite large
- So what can we do?
- Next, we will:
Neural network verification is hard
- NP-complete even for simple networks and properties
- Real networks can be quite large

So what can we do?

Next, we will:
1. Survey state-of-the-art verification techniques
Neural network verification is **hard**
- NP-complete even for simple networks and properties
- Real networks can be quite large

So what can we do?

Next, we will:
1. Survey state-of-the-art verification techniques
2. Discuss one such technique (Reluplex) in more detail
Table of Contents

1. Introduction
2. Neural Networks
3. The Neural Network Verification Problem
4. State-of-the-Art Verification Techniques
5. Reluplex
6. Summary
Disclaimer: The literature on neural network verification is growing rapidly. The work mentioned here is just a sample. Apologies to all authors whose work is not cited.
Techniques and Challenges

Main challenge is scalability

Usually the case in verification

Two kinds of techniques:

- Sound and complete: limited scalability, always succeed
- Sound and incomplete: better scalability, can return “don’t know”

Orthogonal: abstraction techniques

Related: testing techniques (e.g., coverage criteria, concolic testing). Not covered here
Main challenge is *scalability*
Techniques and Challenges

- Main challenge is *scalability*
 - Usually the case in verification
Techniques and Challenges

- Main challenge is *scalability*
 - Usually the case in verification

- Two kinds of techniques:
Techniques and Challenges

- Main challenge is *scalability*
 - Usually the case in verification

- Two kinds of techniques:
 - *Sound* and *complete*:
Techniques and Challenges

- Main challenge is *scalability*
 - Usually the case in verification

- Two kinds of techniques:
 - *Sound* and *complete*:
 - limited scalability
Techniques and Challenges

- Main challenge is **scalability**
 - Usually the case in verification

- Two kinds of techniques:
 - *Sound* and *complete*:
 - limited scalability
 - always succeed

- Orthogonal: abstraction techniques

- Related: testing techniques (e.g., coverage criteria, concolic testing). Not covered here
Techniques and Challenges

- Main challenge is *scalability*
 - Usually the case in verification

- Two kinds of techniques:
 - *Sound* and *complete*:
 - limited scalability
 - always succeed
 - *Sound* and *incomplete*:
Techniques and Challenges

• Main challenge is *scalability*
 • Usually the case in verification

• Two kinds of techniques:
 • *Sound* and *complete*:
 • limited scalability
 • always succeed
 • *Sound* and *incomplete*:
 • better scalability
Main challenge is *scalability*
- Usually the case in verification

Two kinds of techniques:
- *Sound* and *complete*:
 - limited scalability
 - always succeed
- *Sound* and *incomplete*:
 - better scalability
 - can return “don’t know”
Techniques and Challenges

- Main challenge is *scalability*
 - Usually the case in verification

- Two kinds of techniques:
 - *Sound* and *complete*:
 - limited scalability
 - always succeed
 - *Sound* and *incomplete*:
 - better scalability
 - can return “don’t know”

- Orthogonal: *abstraction* techniques
Techniques and Challenges

- Main challenge is *scalability*
 - Usually the case in verification

- Two kinds of techniques:
 - *Sound* and *complete*:
 - limited scalability
 - always succeed
 - *Sound* and *incomplete*:
 - better scalability
 - can return “don’t know”

- Orthogonal: *abstraction* techniques

- Related: testing techniques (e.g., *coverage criteria*, *concolic testing*). Not covered here
So, How Big a Network can you Verify?

Very difficult to compare!

Different properties make a huge difference

Compare complete and incomplete techniques

Different underlying engines

Different benchmarks

Comparative study: Bunel et al, 2017 [BTT+17]

Still, as a rule of thumb...

Complete techniques: hundreds to thousands

Incomplete techniques: thousands to tens of thousands
So, How Big a Network can you Verify?

- Very difficult to compare!
Very difficult to compare!
 - Different properties make a huge difference
So, How Big a Network can you Verify?

- Very difficult to compare!
 - Different *properties* make a huge difference
 - Compare *complete* and *incomplete* techniques
So, How Big a Network can you Verify?

- Very difficult to compare!
 - Different *properties* make a huge difference
 - Compare *complete* and *incomplete* techniques
 - Different underlying *engines*
So, How Big a Network can you Verify?

- Very difficult to compare!
 - Different *properties* make a huge difference
 - Compare *complete* and *incomplete* techniques
 - Different underlying *engines*
 - Different *benchmarks*

Comparative study: Bunel et al, 2017 \cite{BTT17}
So, How Big a Network can you Verify?

- Very difficult to compare!
 - Different *properties* make a huge difference
 - Compare *complete* and *incomplete* techniques
 - Different underlying *engines*
 - Different *benchmarks*
 - Comparative study: Bunel et al, 2017 [BTT+17]
So, How Big a Network can you Verify?

- Very difficult to compare!
 - Different *properties* make a huge difference
 - Compare *complete* and *incomplete* techniques
 - Different underlying *engines*
 - Different *benchmarks*
 - Comparative study: Bunel et al, 2017 [BTT⁺17]

- Still, as a rule of thumb...
So, How Big a Network can you Verify?

- Very difficult to compare!
 - Different *properties* make a huge difference
 - Compare *complete* and *incomplete* techniques
 - Different underlying *engines*
 - Different *benchmarks*
 - Comparative study: Bunel et al, 2017 [BTT^17]

- Still, as a rule of thumb...
 - *Complete* techniques: hundreds to *thousands*
So, How Big a Network can you Verify?

- Very difficult to compare!
 - Different properties make a huge difference
 - Compare complete and incomplete techniques
 - Different underlying engines
 - Different benchmarks
 - Comparative study: Bunel et al, 2017 [BTT+17]

- Still, as a rule of thumb...
 - Complete techniques: hundreds to thousands
 - Incomplete techniques: thousands to tens of thousands
Among first attempts to verify neural networks, NeVeR (Pulina and Tacchella, 2010) focused on networks with Sigmoid activation functions. The main idea was to over-approximate Sigmoids using interval arithmetic and then apply the interval arithmetic solver HySAT.
Among first attempts to verify neural networks
Among first attempts to verify neural networks

Focused on networks with Sigmoid activation functions
Among first attempts to verify neural networks
Focused on networks with Sigmoid activation functions
Main idea: *over-approximate* Sigmoids using *interval arithmetic*
Among first attempts to verify neural networks

Focused on networks with Sigmoid activation functions

Main idea: *over-approximate* Sigmoids using *interval arithmetic*

... and then apply the interval arithmetic solver HySAT
Over-Approximations

A common theme in verification is over-approximation. The core idea is to replace a system S with a simpler system \bar{S}. All behaviors of S should appear in \bar{S}, but additional, spurious behaviors also exist in \bar{S}. Because \bar{S} is simpler, it is easier to verify.
Over-Approximations

- A common theme in verification
A common theme in verification

Core idea: replace a system S with a *simpler* \overline{S}

All behaviors of S appear in \overline{S}

But additional, spurious behaviors also exist in \overline{S}

Because \overline{S} is simpler, it is easier to verify
Over-Approximations

- A common theme in verification
- Core idea: replace a system S with a *simpler* \bar{S}
- *All behaviors* of S appear in \bar{S}
Over-Approximations

- A common theme in verification
- Core idea: replace a system S with a simpler \bar{S}
- All behaviors of S appear in \bar{S}
 - But additional, spurious behaviors also exist in \bar{S}
Over-Approximations

- A common theme in verification
- Core idea: replace a system S with a simpler \bar{S}
- **All behaviors** of S appear in \bar{S}
 - But additional, *spurious* behaviors also exist in \bar{S}
 - Because \bar{S} is simpler, it is *easier to verify*
Over-Approximations (cnt’d)

If \bar{S} is correct, so is S.

Because all behaviors of S exist in \bar{S}.

If \bar{S} is incorrect:

Either S is also incorrect

Or the detected bad behavior is spurious

If needed, \bar{S} is refined to remove the spurious behavior, and the process is repeated.
Over-Approximations (cnt’d)

If \overline{S} is correct, so is S. Because all behaviors of S exist in \overline{S}.

If \overline{S} is incorrect:

Either S is also incorrect

Or the detected bad behavior is spurious

If needed, \overline{S} is refined to remove the spurious behavior, and the process is repeated.
If \bar{S} is correct, so is S. Because all behaviors of S exist in \bar{S}.

If \bar{S} is incorrect:
- Either S is also incorrect.
- Or the detected bad behavior is spurious.

If needed, \bar{S} is refined to remove the spurious behavior, and the process is repeated.
If \overline{S} is correct, so is S.

Because all behaviors of S exist in \overline{S}.

If \overline{S} is incorrect:

- Either S is also incorrect.
- Or the detected bad behavior is spurious.

If needed, \overline{S} is refined to remove the spurious behavior, and the process is repeated.
If \bar{S} is correct, so is S
- Because all behaviors of S exist in \bar{S}
If \bar{S} is correct, so is S
- Because all behaviors of S exist in \bar{S}

If \bar{S} is incorrect:

- Either S is also incorrect
- Or the detected bad behavior is spurious
- If needed, \bar{S} is refined to remove the spurious behavior, and the process is repeated
Over-Approximations (cnt’d)

- If \overline{S} is correct, so is S
 - Because all behaviors of S exist in \overline{S}

- If \overline{S} is incorrect:
 - Either S is also incorrect

Guy Katz (HUJI)
If \overline{S} is correct, so is S
 - Because all behaviors of S exist in \overline{S}

If \overline{S} is incorrect:
 - Either S is also incorrect
 - Or the detected bad behavior is spurious
 - If needed, \overline{S} is refined to remove the spurious behavior, and the process is repeated
If \overline{S} is correct, so is S
 - Because all behaviors of S exist in \overline{S}

If \overline{S} is incorrect:
 - Either S is also incorrect
 - Or the detected bad behavior is spurious
Over-Approximations (cnt’d)

- If \bar{S} is correct, so is S
 - Because all behaviors of S exist in \bar{S}

- If \bar{S} is incorrect:
 - Either S is also incorrect
 - Or the detected bad behavior is spurious
Over-Approximations (cnt’d)

- If \overline{S} is correct, so is S
 - Because all behaviors of S exist in \overline{S}

- If \overline{S} is incorrect:
 - Either S is also incorrect
 - Or the detected bad behavior is spurious

- If needed, \overline{S} is \textit{refined} to remove the spurious behavior, and the process is repeated
NeVeR (Pulina and Tacchella, 2010) [PT10]

For $x \in [a, b]$, we just know that $f(x)$ is in some range $[y_a, y_b]$. When a spurious example is found, the x segments are made smaller, and bounds are made tighter. First step, but could only tackle very small networks (10 neurons).
Abstraction used by Pulina and Tacchella:
Abstraction used by Pulina and Tacchella:

For $x \in [x_a, x_b]$ we just know that $f(x)$ is in some range $[y_a, y_b]$
Abstraction used by Pulina and Tacchella:

For \(x \in [x_a, x_b] \) we just know that \(f(x) \) is in some range \([y_a, y_b]\)

When a spurious example is found, the \(x \) segments are made smaller, and bounds are made tighter.
NeVeR (Pulina and Tacchella, 2010) [PT10]

- Abstraction used by Pulina and Tacchella:

 For $x \in [x_a, x_b]$ we just know that $f(x)$ is in some range $[y_a, y_b]$

 When a spurious example is found, the x segments are made smaller, and bounds are made tighter

 First step, but could only tackle very small networks (10 neurons)
Bastani et al, 2016 [BIL⁺16]

A technique for evaluating a network’s adversarial robustness
A reduction from a verification-like problem to linear programming

Did not directly study verification
But core idea very useful for verification

Guy Katz (HUJI)
A technique for evaluating a network’s adversarial robustness
A technique for evaluating a network’s adversarial robustness

A reduction from a verification-like problem to linear programming
• A technique for evaluating a network’s adversarial robustness
• A reduction from a verification-like problem to linear programming
• Did not directly study verification
Bastani et al, 2016 [BIL⁺16]

- A technique for evaluating a network’s adversarial robustness
- A reduction from a verification-like problem to *linear programming*
- Did not directly study verification
 - But core idea very useful for verification
Linear Programming (LP)

A linear program:

\[
\begin{align*}
\text{minimize} & \quad \bar{c} \cdot \bar{x} \\
\text{subject to} & \quad A \cdot \bar{x} = \bar{b} \\
& \quad \bar{l} \leq \bar{x} \leq \bar{u}
\end{align*}
\]

Intuitively:

Set of variables \bar{x}, each with lower (\bar{l}) and upper (\bar{u}) bounds

Set of linear equations that need to hold ($A \cdot \bar{x} = \bar{b}$)

Some objective function to optimize $\bar{c} \cdot \bar{x}$

Highly useful for many problems in CS, studied for many decades

Problem known to be in P, powerful solvers exist
A linear program:

\[
\begin{align*}
\min & \quad \bar{c} \cdot \bar{x} \\
\text{subject to} & \quad A \cdot \bar{x} = \bar{b} \\
& \quad \bar{l} \leq \bar{x} \leq \bar{u}
\end{align*}
\]

Intuitively:
- Set of variables \(\bar{x} \), each with lower (\(\bar{l} \)) and upper (\(\bar{u} \)) bounds
- Set of linear equations that need to hold (\(A \cdot \bar{x} = \bar{b} \))
- Some objective function to optimize \(\bar{c} \cdot \bar{x} \)

Highly useful for many problems in CS, studied for many decades

Problem known to be in \(\text{P} \), powerful solvers exist
A linear program:

\[
\begin{align*}
\text{minimize} & \quad \bar{c} \cdot \bar{x} \\
\text{subject to} & \quad A \cdot \bar{x} = \bar{b} \\
\text{and} & \quad \bar{l} \leq \bar{x} \leq \bar{u}
\end{align*}
\]
A linear program:

\[
\begin{align*}
\text{minimize} & \quad \bar{c} \cdot \bar{x} \\
\text{subject to} & \quad A \cdot \bar{x} = \bar{b} \\
\text{and} & \quad \bar{l} \leq \bar{x} \leq \bar{u}
\end{align*}
\]

Intuitively:
Linear Programming (LP)

A linear program:

minimize $\bar{c} \cdot \bar{x}$
subject to $A \cdot \bar{x} = \bar{b}$
and $\bar{l} \leq \bar{x} \leq \bar{u}$

Intuitively:
- Set of variables \bar{x}, each with lower (\bar{l}) and upper (\bar{u}) bounds
A linear program:

\[
\begin{align*}
& \text{minimize} & \bar{c} \cdot \bar{x} \\
& \text{subject to} & A \cdot \bar{x} = \bar{b} \\
& \text{and} & \bar{l} \leq \bar{x} \leq \bar{u}
\end{align*}
\]

Intuitively:
- Set of variables \(\bar{x} \), each with lower (\(\bar{l} \)) and upper (\(\bar{u} \)) bounds
- Set of linear equations that need to hold (\(A \cdot \bar{x} = \bar{b} \))
A linear program:

\[
\begin{align*}
\text{minimize} & \quad \bar{c} \cdot \bar{x} \\
\text{subject to} & \quad A \cdot \bar{x} = \bar{b} \\
\text{and} & \quad \bar{l} \leq \bar{x} \leq \bar{u}
\end{align*}
\]

Intuitively:

- Set of variables \(\bar{x}\), each with lower (\(\bar{l}\)) and upper (\(\bar{u}\)) bounds
- Set of linear equations that need to hold (\(A \cdot \bar{x} = \bar{b}\))
- Some objective function to optimize \(\bar{c} \cdot \bar{x}\)
Linear Programming (LP)

- A linear program:

 \[
 \begin{align*}
 \text{minimize} & \quad \bar{c} \cdot \bar{x} \\
 \text{subject to} & \quad A \cdot \bar{x} = \bar{b} \\
 \text{and} & \quad \bar{l} \leq \bar{x} \leq \bar{u}
 \end{align*}
 \]

- Intuitively:
 - Set of variables \(\bar{x} \), each with lower (\(\bar{l} \)) and upper (\(\bar{u} \)) bounds
 - Set of linear equations that need to hold (\(A \cdot \bar{x} = \bar{b} \))
 - Some objective function to optimize \(\bar{c} \cdot \bar{x} \)

- \textbf{Highly} useful for many problems in CS, studied for many decades

- Problem known to be in \(\mathbf{P} \)
- Powerful solvers exist

Guy Katz (HUJI)
A linear program:

minimize \(\bar{c} \cdot \bar{x} \)
subject to \(A \cdot \bar{x} = \bar{b} \)
and \(\bar{l} \leq \bar{x} \leq \bar{u} \)

Intuitively:
- Set of variables \(\bar{x} \), each with lower (\(\bar{l} \)) and upper (\(\bar{u} \)) bounds
- Set of linear equations that need to hold (\(A \cdot \bar{x} = \bar{b} \))
- Some objective function to optimize \(\bar{c} \cdot \bar{x} \)

Highly useful for many problems in CS, studied for many decades

Problem known to be in \(\mathbf{P} \), powerful solvers exist
Replacing ReLUs with Linear Constraints

Let $y = \text{ReLU}(x)$. Each ReLU has two phases:

Active phase: $(x \geq 0) \land (y = x)$

Inactive phase: $(x \leq 0) \land (y = 0)$

Each phase is a linear constraint. True for all piece-wise linear functions, not just ReLUs. If a ReLU is known to be in a specific phase, it can be discarded and replaced with a linear equation.
Let $y = \text{ReLU}(x)$. Each ReLU has two phases:
Let $y = \text{ReLU}(x)$. Each ReLU has two phases:

- **Active** phase: $(x \geq 0) \land (y = x)$

Each phase is a linear constraint true for all piece-wise linear functions, not just ReLUs. If a ReLU is known to be in a specific phase, it can be discarded and replaced with a linear equation.
Replacing ReLUs with Linear Constraints

Let $y = \text{ReLU}(x)$. Each ReLU has two phases:

- **Active** phase: $(x \geq 0) \land (y = x)$
- **Inactive** phase: $(x \leq 0) \land (y = 0)$
Replacing ReLUs with Linear Constraints

Let $y = \text{ReLU}(x)$. Each ReLU has two phases:

- **Active** phase: $(x \geq 0) \land (y = x)$
- **Inactive** phase: $(x \leq 0) \land (y = 0)$

Each phase is a *linear* constraint
Replacing ReLUs with Linear Constraints

Let $y = \text{ReLU}(x)$. Each ReLU has two phases:

- **Active** phase: $(x \geq 0) \land (y = x)$
- **Inactive** phase: $(x \leq 0) \land (y = 0)$

Each phase is a *linear* constraint

True for all piece-wise linear functions, not just ReLUs
Replacing ReLUs with Linear Constraints

Let $y = \text{ReLU}(x)$. Each ReLU has two phases:

- **Active** phase: $(x \geq 0) \land (y = x)$
- **Inactive** phase: $(x \leq 0) \land (y = 0)$

Each phase is a *linear* constraint

- True for all piece-wise linear functions, not just ReLUs

If a ReLU is known to be in a specific phase, it can be discarded and *replaced* with a linear equation
To look for adversarial inputs around a point \bar{x}_0:

1. Encode the network's weighted sums as linear equations.
2. Evaluate the network for \bar{x}_0.
3. For every $y = \text{ReLU}(x)$:
 - If it is active for \bar{x}_0, replace it with $(x \geq 0) \land (y = x)$.
 - If it is inactive, replace it with $(x \leq 0) \land (y = 0)$.

Have an LP solver look for adversarial inputs.

Evaluated on image recognition networks:

- Efficient (LP solvers are fast),
- Sound, but incomplete:
 - Discovered adversarial inputs are correct
 - But may miss some adversarial inputs.
To look for adversarial inputs around a point \bar{x}_0:

- Encode the network's weighted sums as linear equations.
- Evaluate the network for \bar{x}_0.
- For every $y = \text{ReLU}(x)$:
 - If it is active for \bar{x}_0, replace it with $(x \geq 0) \land (y = x)$.
 - If it is inactive, replace it with $(x \leq 0) \land (y = 0)$.
- Have an LP solver look for adversarial inputs

Evaluated on image recognition networks:
- Efficient (LP solvers are fast), sound, but incomplete:
 - Discovered adversarial inputs are correct.
 - But may miss some adversarial inputs.
To look for adversarial inputs around a point \bar{x}_0:

- Encode the network’s weighted sums as linear equations.
To look for adversarial inputs around a point \bar{x}_0:

- Encode the network’s weighted sums as linear equations
- Evaluate the network for \bar{x}_0
To look for adversarial inputs around a point \bar{x}_0:

- Encode the network’s weighted sums as linear equations
- Evaluate the network for \bar{x}_0
- For every $y = \text{ReLU}(x)$:
 - If it is active for \bar{x}_0, replace it with $(x \geq 0) \land (y = x)$
 - If it is inactive, replace it with $(x \leq 0) \land (y = 0)$

Have an LP solver look for adversarial inputs

Evaluated on image recognition networks
Efficient (LP solvers are fast), sound, but incomplete:
Discovered adversarial inputs are correct
But may miss some adversarial inputs
To look for adversarial inputs around a point \bar{x}_0:

- Encode the network’s weighted sums as linear equations
- Evaluate the network for \bar{x}_0
- For every $y = \text{ReLU}(x)$:
 - If it is active for \bar{x}_0, replace it with $(x \geq 0) \land (y = x)$
 - If it is inactive, replace it with $(x \leq 0) \land (y = 0)$
To look for adversarial inputs around a point \bar{x}_0:

- Encode the network’s weighted sums as linear equations
- Evaluate the network for \bar{x}_0
- For every $y = \text{ReLU}(x)$:
 - If it is active for \bar{x}_0, replace it with $(x \geq 0) \land (y = x)$
 - If it is inactive, replace it with $(x \leq 0) \land (y = 0)$

Have an LP solver look for adversarial inputs

Evaluated on image recognition networks

Efficient (LP solvers are fast), sound, but incomplete:

Discovered adversarial inputs are correct
But may miss some adversarial inputs
To look for adversarial inputs around a point \bar{x}_0:
- Encode the network’s weighted sums as linear equations
- Evaluate the network for \bar{x}_0
- For every $y = \text{ReLU}(x)$:
 - If it is active for \bar{x}_0, replace it with $(x \geq 0) \land (y = x)$
 - If it is inactive, replace it with $(x \leq 0) \land (y = 0)$
- Have an LP solver look for adversarial inputs
To look for adversarial inputs around a point \bar{x}_0:

- Encode the network’s weighted sums as linear equations
- Evaluate the network for \bar{x}_0
- For every $y = \text{ReLU}(x)$:
 - If it is active for \bar{x}_0, replace it with $(x \geq 0) \land (y = x)$
 - If it is inactive, replace it with $(x \leq 0) \land (y = 0)$
- Have an LP solver look for adversarial inputs

Evaluated on image recognition networks
To look for adversarial inputs around a point \bar{x}_0:

- Encode the network’s weighted sums as linear equations
- Evaluate the network for \bar{x}_0
- For every $y = \text{ReLU}(x)$:
 - If it is active for \bar{x}_0, replace it with $(x \geq 0) \land (y = x)$
 - If it is inactive, replace it with $(x \leq 0) \land (y = 0)$

- Have an LP solver look for adversarial inputs

Evaluated on image recognition networks

- **Efficient** (LP solvers are fast), **sound**, but **incomplete**:
To look for adversarial inputs around a point \bar{x}_0:

- Encode the network's weighted sums as linear equations
- Evaluate the network for \bar{x}_0
- For every $y = \text{ReLU}(x)$:
 - If it is active for \bar{x}_0, replace it with $(x \geq 0) \land (y = x)$
 - If it is inactive, replace it with $(x \leq 0) \land (y = 0)$
- Have an LP solver look for adversarial inputs

Evaluated on image recognition networks

Efficient (LP solvers are fast), sound, but incomplete:

- Discovered adversarial inputs are correct
To look for adversarial inputs around a point \bar{x}_0:
- Encode the network’s weighted sums as linear equations
- Evaluate the network for \bar{x}_0
- For every $y = \text{ReLU}(x)$:
 - If it is active for \bar{x}_0, replace it with $(x \geq 0) \land (y = x)$
 - If it is inactive, replace it with $(x \leq 0) \land (y = 0)$
- Have an LP solver look for adversarial inputs

Evaluated on image recognition networks

Efficient (LP solvers are fast), *sound*, but *incomplete*:
- Discovered adversarial inputs are correct
- But may miss some adversarial inputs
Reducing Verification to Linear Programming

A complete extension of the technique from Bastani et al

Case splitting: an enumeration of all possibilities:
For each ReLU, guess whether it is active or inactive
Solve the resulting LP
If a solution is found, return SAT
Otherwise, go back and try another guess
If all guesses are exhausted, return UNSAT

Very similar to the naive algorithm for Boolean satisfiability
A complete extension of the technique from Bastani et al
A complete extension of the technique from Bastani et al

Case splitting: an enumeration of all possibilities:
A *complete* extension of the technique from Bastani et al

Case splitting: an enumeration of all possibilities:
- For each ReLU, *guess* whether it is active or inactive
Reducing Verification to Linear Programming

- **A complete** extension of the technique from Bastani et al

- **Case splitting**: an enumeration of all possibilities:
 - For each ReLU, *guess* whether it is active or inactive
 - Solve the resulting LP

Verification of ML
Reducing Verification to Linear Programming

- A *complete* extension of the technique from Bastani et al

- **Case splitting:** an enumeration of all possibilities:
 - For each ReLU, *guess* whether it is active or inactive
 - Solve the resulting LP
 - If a solution is found, return SAT
A complete extension of the technique from Bastani et al

Case splitting: an enumeration of all possibilities:
- For each ReLU, guess whether it is active or inactive
- Solve the resulting LP
- If a solution is found, return SAT
- Otherwise, go back and try another guess
A \textit{complete} extension of the technique from Bastani et al

\textbf{Case splitting}: an enumeration of all possibilities:
- For each ReLU, \textit{guess} whether it is active or inactive
- Solve the resulting LP
- If a solution is found, return SAT
- Otherwise, go back and try another guess
- If all guesses are exhausted, return UNSAT
Reducing Verification to Linear Programming

- A complete extension of the technique from Bastani et al
- Case splitting: an enumeration of all possibilities:
 - For each ReLU, guess whether it is active or inactive
 - Solve the resulting LP
 - If a solution is found, return SAT
 - Otherwise, go back and try another guess
 - If all guesses are exhausted, return UNSAT

- Very similar to the naive algorithm for Boolean satisfiability
Reducing Verification to Linear Programming (cnt’d)
Case splitting creates a *search tree*
Case splitting creates a search tree

Problem is SAT iff at least one leaf is SAT
Case splitting creates a search tree

Problem is SAT iff at least one leaf is SAT

\[y_1 = \text{ReLU}(x_1), \ y_2 = \text{ReLU}(x_2) \]

\[
\begin{align*}
0 & \quad y_1 = 0, x_1 \leq 0 \\
1 & \quad y_1 = x_1, x_1 \geq 0 \\
\end{align*}
\]

\[
\begin{align*}
1 & \quad y_2 = 0, x_2 \leq 0 \\
2 & \quad y_2 = x_2, x_2 \geq 0 \\
\end{align*}
\]

\[
\begin{align*}
2 & \quad \text{UNSAT} \\
2 & \quad \text{SAT} \\
2 & \quad \text{UNSAT} \\
2 & \quad \text{UNSAT} \\
\end{align*}
\]
Reducing Verification to Linear Programming (cnt’d)

Sound and complete case splitting approach proposed in [KBD+17a].

Approach very sensitive to heuristics and tricks for trimming the search space.

Much like Boolean satisfiability.

Several sound and complete variations, including:

- Ehlers, 2017 [Ehl17] (the Planet solver).
- Tjeng and Tedrake, 2017 [TT17] (the BaB solver).
- Dutta et al, 2018 [DJST18] (the Sherlock solver).
Reducing Verification to Linear Programming (cnt’d)

- *Sound* and *complete* case splitting approach proposed in [KBD+17a]

Approach very sensitive to heuristics and tricks for trimming the search space. Much like Boolean satisfiability, several sound and complete variations, including:

- Ehlers, 2017 [Ehl17] (the Planet solver)
- Tjeng and Tedrake, 2017 [TT17]
- Bunel et al, 2017 [BTT+17] (the BaB solver)
- Lomuscio and Maganti, 2017 [LM17]
- Dutta et al, 2018 [DJST18] (the Sherlock solver)
Sound and complete case splitting approach proposed in [KBD^+17a]

Approach very sensitive to heuristics and tricks for trimming the search space
Sound and complete case splitting approach proposed in [KBD+17a]

Approach very sensitive to heuristics and tricks for trimming the search space
 - Much like Boolean satisfiability

Several sound and complete variations, including:
- Ehlers, 2017 [Ehl17] (the Planet solver)
- Tjeng and Tedrake, 2017 [TT17]
- Bunel et al, 2017 [BTT+17] (the BaB solver)
- Lomuscio and Maganti, 2017 [LM17]
- Dutta et al, 2018 [DJST18] (the Sherlock solver)
Reducing Verification to Linear Programming (cnt’d)

- *Sound* and *complete* case splitting approach proposed in [KBD+17a]

- Approach very sensitive to *heuristics* and tricks for trimming the search space
 - Much like Boolean satisfiability

- Several *sound* and *complete* variations, including:

Ehlers, 2017 [Ehl17] (the Planet solver)
Tjeng and Tedrake, 2017 [TT17]
Bunel et al, 2017 [BTT+17] (the BaB solver)
Lomuscio and Maganti, 2017 [LM17]
Dutta et al, 2018 [DJST18] (the Sherlock solver)
Reducing Verification to Linear Programming (cnt’d)

- **Sound** and **complete** case splitting approach proposed in [KBD+17a]

- Approach very sensitive to **heuristics** and tricks for trimming the search space
 - Much like Boolean satisfiability

- Several **sound** and **complete** variations, including:
 - Ehlers, 2017 [Ehl17] (the *Planet* solver)
Sound and complete case splitting approach proposed in [KBD+17a]

Approach very sensitive to heuristics and tricks for trimming the search space
 Much like Boolean satisfiability

Several sound and complete variations, including:
 Ehlers, 2017 [Ehl17] (the Planet solver)
 Tjeng and Tedrake, 2017 [TT17]
Sound and complete case splitting approach proposed in [KBD+17a]

Approach very sensitive to heuristics and tricks for trimming the search space
 Much like Boolean satisfiability

Several sound and complete variations, including:
 Ehlers, 2017 [Ehl17] (the Planet solver)
 Tjeng and Tedrake, 2017 [TT17]
 Bunel et al, 2017 [BTT+17] (the BaB solver)
Reducing Verification to Linear Programming (cnt’d)

- **Sound** and **complete** case splitting approach proposed in [KBD+17a]

- Approach very sensitive to **heuristics** and tricks for trimming the search space
 - Much like Boolean satisfiability

- Several **sound** and **complete** variations, including:
 - Ehlers, 2017 [Ehl17] (the *Planet* solver)
 - Tjeng and Tedrake, 2017 [TT17]
 - Bunel et al, 2017 [BTT+17] (the *BaB* solver)
 - Lomuscio and Maganti, 2017 [LM17]
Reducing Verification to Linear Programming (cnt’d)

- **Sound** and **complete** case splitting approach proposed in \[KBD^+17a\]

- Approach very sensitive to **heuristics** and tricks for trimming the search space
 - Much like Boolean satisfiability

- Several **sound** and **complete** variations, including:
 - Ehlers, 2017 \[Ehl17\] (the **Planet** solver)
 - Tjeng and Tedrake, 2017 \[TT17\]
 - Bunel et al, 2017 \[BTT^+17\] (the **BaB** solver)
 - Lomuscio and Maganti, 2017 \[LM17\]
 - Dutta et al, 2018 \[DJST18\] (the **Sherlock** solver)
DLV (Huang et al, 2017) [HKWW17]

Apply a discretization of the input space. Discretization via manipulations. These can represent camera scratches, rotations, etc. Sound but incomplete.

Then do an exhaustive search, layer-by-layer.

Tool: the DLV solver, evaluated on image recognition networks.
Apply a \textit{discretization} of the input space
DLV (Huang et al, 2017) [HKWW17]

- Apply a *discretization* of the input space
 - Discretization via *manipulations*
Apply a *discretization* of the input space

- Discretization via *manipulations*
- These can represent camera scratches, rotations, etc
Apply a *discretization* of the input space
- Discretization via *manipulations*
- These can represent camera scratches, rotations, etc
- *Sound* but *incomplete*
Apply a *discretization* of the input space
- Discretization via *manipulations*
- These can represent camera scratches, rotations, etc
- *Sound* but *incomplete*
DLV (Huang et al, 2017) [HKWW17]

- Apply a *discretization* of the input space
 - Discretization via *manipulations*
 - These can represent camera scratches, rotations, etc
 - *Sound* but *incomplete*

- Then do an *exhaustive* search, layer-by-layer
Apply a *discretization* of the input space
- Discretization via *manipulations*
- These can represent camera scratches, rotations, etc
- *Sound* but *incomplete*

Then do an *exhaustive* search, layer-by-layer

Tool: the *DLV* solver, evaluated on image recognition networks
AI² (Gehr et al, 2018) [GMDC+18]

Over-approximation of the input property

Over-approximate with polyhedra

Propagate polyhedra layer-by-layer

Sound but incomplete

Abstract property holds \Rightarrow original property holds

Converse not necessarily true
Over-approximation of the *input property*
Over-approximation of the *input property*

Over-approximate with polyhedra
Over-approximation of the *input property*
- Over-approximate with polyhedra
- Propagate polyhedra layer-by-layer
Over-approximation of the *input property*
- Over-approximate with polyhedra
- Propagate polyhedra layer-by-layer
Over-approximation of the \textit{input property}
- Over-approximate with polyhedra
- Propagate polyhedra layer-by-layer

\textit{Sound} but \textit{incomplete}
Over-approximation of the *input property*
- Over-approximate with polyhedra
- Propagate polyhedra layer-by-layer

Sound but incomplete
- Abstract property holds \Rightarrow original property holds
AI\(^2\) (Gehr et al, 2018) [GMDC\(^{+}18\)]

- Over-approximation of the *input property*
 - Over-approximate with polyhedra
 - Propagate polyhedra layer-by-layer

- *Sound* but *incomplete*
 - Abstract property holds ⇒ original property holds
 - Converse not necessarily true
Networks as Continuous Functions

Verification: analyzing this function's properties
Can reduce properties to single output
Analyze a real-valued function
Find lower and upper bounds on the output
The network is a \textit{continuous} function from input to output.
Networks as Continuous Functions

- The network is a *continuous* function from input to output
- Verification: analyzing this *function’s properties*
The network is a *continuous* function from input to output.

Verification: analyzing this *function’s properties*.
- Can reduce properties to single output.
Networks as Continuous Functions

- The network is a *continuous* function from input to output
- Verification: analyzing this *function’s properties*
 - Can reduce properties to single output
 - Analyze a real-valued function
The network is a continuous function from input to output

Verification: analyzing this function’s properties
 - Can reduce properties to single output
 - Analyze a real-valued function

Find lower and upper bounds on the output
DeepGO (Ruan et al, 2018) [RHK18]

Lipschitz Continuity:

\[|f(x_1) - f(x_2)| \leq K \cdot |x_1 - x_2| \]

K is the Lipschitz constant. The best *K* is the smallest one.

Partition input, bound output on each piece, refine if needed.
DeepGO (Ruan et al, 2018) [RHK18]

- **Lipschitz Continuity**: \[|f(x_1) - f(x_2)| \leq K \cdot |x_1 - x_2| \]

\(K\) is the Lipschitz constant. The best \(K\) is the smallest one. Partition input, bound output on each piece, refine if needed.
Lipschitz Continuity: $|f(x_1) - f(x_2)| \leq K \cdot |x_1 - x_2|$

- K is the Lipschitz constant
DeepGO (Ruan et al, 2018) [RHK18]

- **Lipschitz Continuity**: \[|f(x_1) - f(x_2)| \leq K \cdot |x_1 - x_2| \]
 - \(K \) is the Lipschitz constant
 - The *best* \(K \) is the smallest one
DeepGO (Ruan et al, 2018) [RHK18]

- **Lipschitz Continuity**: \(|f(x_1) - f(x_2)| \leq K \cdot |x_1 - x_2|\)
 - \(K\) is the Lipschitz constant
 - The *best* \(K\) is the smallest one

- Partition input, bound output on each piece, refine if needed
DeepGO (Ruan et al, 2018) [RHK18]

- **Lipschitz Continuity**: \(|f(x_1) - f(x_2)| \leq K \cdot |x_1 - x_2|
 - \(K\) is the Lipschitz constant
 - The best \(K\) is the smallest one

- Partition input, bound output on each piece, refine if needed
DeepGO (Ruan et al, 2018) [RHK18] (cnt’d)

Tool: DeepGO

Iteratively refine partition until bounds sufficiently accurate
Guaranteed to converge (complete), assuming a small acceptable error
Smaller values of K lead to faster convergence

Terminate when the discovered bounds imply the property
Complexity also related to size of input domain
Tool: *DeepGO* [RHK18]
Tool: *DeepGO* [RHK18]

Iteratively refine partition until bounds sufficiently accurate
DeepGO (Ruan et al, 2018) [RHK18] (cnt’d)

- Tool: DeepGO [RHK18]
- Iteratively refine partition until bounds sufficiently accurate
 - Guaranteed to converge (complete), assuming a small acceptable error
DeepGO (Ruan et al, 2018) [RHK18] (cnt’d)

- Tool: *DeepGO* [RHK18]
 - Iteratively refine partition until bounds sufficiently accurate
 - Guaranteed to converge (*complete*), assuming a small acceptable error
 - Smaller values of K lead to *faster* convergence
Tool: *DeepGO* [RHK18]

Iteratively refine partition until bounds sufficiently accurate
- Guaranteed to converge (*complete*), assuming a small acceptable error
- Smaller values of K lead to *faster* convergence

Terminate when the discovered bounds imply the property
DeepGO (Ruan et al, 2018) [RHK18] (cnt’d)

- Tool: *DeepGO* [RHK18]
- Iteratively refine partition until bounds sufficiently accurate
 - Guaranteed to converge (*complete*), assuming a small acceptable error
 - Smaller values of K lead to *faster* convergence
- Terminate when the discovered bounds imply the property
- Complexity also related to size of *input domain*
Verification of Binarized Neural Networks

Cheng et al [CNR17b], Narodytska et al [NKR+18]

Verification using quadratic solvers
Cheng et al [CNR17a]

Network reachability analysis via over-approximations around specific inputs
Xiang et al [XTJ18]
Additional Techniques at a Glance

- Verification of *Binarized* Neural Networks
Additional Techniques at a Glance

- Verification of *Binarized* Neural Networks
 - Cheng et al [CNR17b], Narodytska et al [NKR^+18]
Additional Techniques at a Glance

- Verification of *Binarized* Neural Networks
 - Cheng et al [CNR17b], Narodytska et al [NKR$^+$18]

- Verification using *quadratic solvers*
Additional Techniques at a Glance

- Verification of *Binarized* Neural Networks
 - Cheng et al [CNR17b], Narodytska et al [NKR⁺18]

- Verification using *quadratic solvers*
 - Cheng et al [CNR17a]
Additional Techniques at a Glance

- Verification of *Binarized* Neural Networks
 - Cheng et al [CNR17b], Narodytska et al [NKR⁺18]

- Verification using *quadratic solvers*
 - Cheng et al [CNR17a]

- Network reachability analysis via *over-approximations* around specific inputs
Additional Techniques at a Glance

- Verification of *Binarized* Neural Networks
 - Cheng et al [CNR17b], Narodytska et al [NKR+18]

- Verification using *quadratic solvers*
 - Cheng et al [CNR17a]

- Network reachability analysis via *over-approximations* around specific inputs
 - Xiang et al [XTJ18]
Additional Techniques at a Glance (cnt’d)

- Supporting the $\| \cdot \|_0$ norm: Ruan et al [RWS+18]
- Parallelization by partitioning the input space: Katz et al [KBD+17b], Wang et al [WPW+18]
- Additional Lipschitz-based approaches: Hull et al [HWZ02], Hein and Andriushchenko [HA17], Weng et al [WZC+18]
- Training safe networks: Dvijotham et al [DGS+18], Raghunathan et al [RSL18]
Supporting the L_0 norm
Supporting the L_0 norm

- Ruan et al [RWS$^+$18]
Supporting the L_0 norm
 - Ruan et al [RWS$^+$18]

Parallelization by partitioning the input space
Additional Techniques at a Glance (cnt’d)

- Supporting the L_0 norm
 - Ruan et al [RWS$^+$18]

- Parallelization by partitioning the input space
 - Katz et al [KBD$^+$17b], Wang et al [WPW$^+$18]
Additional Techniques at a Glance (cnt’d)

- Supporting the L_0 norm
 - Ruan et al [RWS$^+$18]

- Parallelization by partitioning the input space
 - Katz et al [KBD$^+$17b], Wang et al [WPW$^+$18]

- Additional Lipschitz-based approaches
Additional Techniques at a Glance (cnt’d)

- Supporting the L_0 norm
 - Ruan et al [RWS$^+$18]

- Parallelization by partitioning the input space
 - Katz et al [KBD$^+$17b], Wang et al [WPW$^+$18]

- Additional Lipschitz-based approaches
 - Hull et al [HWZ02], Hein and Andriushchenko [HA17], Weng et al [WZC$^+$18]
Supporting the L_0 norm
- Ruan et al [RWS$^+$18]

Parallelization by partitioning the input space
- Katz et al [KBD$^+$17b], Wang et al [WPW$^+$18]

Additional **Lipschitz-based** approaches
- Hull et al [HWZ02], Hein and Andriushchenko [HA17], Weng et al [WZC$^+$18]

Training safe networks
Additional Techniques at a Glance (cnt’d)

- Supporting the L_0 norm
 - Ruan et al [RWS$^+$18]

- Parallelization by partitioning the input space
 - Katz et al [KBD$^+$17b], Wang et al [WPW$^+$18]

- Additional Lipschitz-based approaches
 - Hull et al [HWZ02], Hein and Andriushchenko [HA17], Weng et al [WZC$^+$18]

- Training safe networks
 - Dvijotham et al [DGS$^+$18], Raghunathan et al [RSL18]
Neural network verification is hard. NP-complete even for simple networks and properties. Reducible to an exponential sequence of easy problems. Sound and complete. Much work on finding efficient heuristics. Can trade completeness for better scalability. Can be combined with abstraction techniques. Next, we will:

1. Focus on one sound and complete technique (Reluplex) in greater detail.
Roadmap

- Neural network verification is hard.
Neural network verification is **hard**
- NP-complete even for simple networks and properties
Neural network verification is **hard**
- NP-complete even for simple networks and properties
- Reducible to an *exponential sequence of easy problems*

Next, we will:

1. Focus on one sound and complete technique (Reluplex) in greater detail
Roadmap

- Neural network verification is *hard*
 - NP-complete even for simple networks and properties
- Reducible to an *exponential sequence of easy problems*
 - Sound and complete
Neural network verification is **hard**
- NP-complete even for simple networks and properties

Reducible to an *exponential sequence of easy problems*
- Sound and complete
- Much work on finding efficient heuristics

Roadmap

- Neural network verification is *hard*
 - NP-complete even for simple networks and properties

- Reducible to an *exponential sequence of easy problems*
 - Sound and complete
 - Much work on finding efficient heuristics

- Can *trade completeness* for better *scalability*
Roadmap

- Neural network verification is *hard*
 - NP-complete even for simple networks and properties

- Reducible to an *exponential sequence of easy problems*
 - Sound and complete
 - Much work on finding efficient heuristics

- Can *trade completeness* for better *scalability*

- Can be combined with *abstraction techniques*
Roadmap

- Neural network verification is *hard*
 - NP-complete even for simple networks and properties
- Reducible to an *exponential sequence of easy problems*
 - Sound and complete
 - Much work on finding efficient heuristics
- Can *trade completeness* for better *scalability*
- Can be combined with *abstraction techniques*

Next, we will:
Roadmap

- Neural network verification is hard
 - NP-complete even for simple networks and properties

- Reducible to an exponential sequence of easy problems
 - Sound and complete
 - Much work on finding efficient heuristics

- Can trade completeness for better scalability

- Can be combined with abstraction techniques

- Next, we will:
 - Focus on one sound and complete technique (Reluplex) in greater detail
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Neural Networks</td>
</tr>
<tr>
<td>3</td>
<td>The Neural Network Verification Problem</td>
</tr>
<tr>
<td>4</td>
<td>State-of-the-Art Verification Techniques</td>
</tr>
<tr>
<td>5</td>
<td>Reluplex</td>
</tr>
<tr>
<td>6</td>
<td>Summary</td>
</tr>
</tbody>
</table>
Reluplex

Joint work with Clark Barrett, David Dill, Kyle Julian and Mykel Kochenderfer (CAV 2017 [KBD+17a]), supported by the FAA and Intel.

A sound and complete verification procedure applied to the ACAS Xu case study. Networks an order of magnitude larger than previously possible. Project still ongoing.
Joint work with Clark Barrett, David Dill, Kyle Julian and Mykel Kochenderfer (CAV 2017 [KBD+17a]), supported by the FAA and Intel
Joint work with Clark Barrett, David Dill, Kyle Julian and Mykel Kochenderfer (CAV 2017 [KBD$^+$17a]), supported by the FAA and Intel

A sound and complete verification procedure
Reluplex

- Joint work with Clark Barrett, David Dill, Kyle Julian and Mykel Kochenderfer (CAV 2017 [KBD+17a]), supported by the FAA and Intel
 - A sound and complete verification procedure
 - Applied to the ACAS Xu case study
Joint work with Clark Barrett, David Dill, Kyle Julian and Mykel Kochenderfer (CAV 2017 [KBD+17a]), supported by the FAA and Intel

- A *sound* and *complete* verification procedure
- Applied to the ACAS Xu case study
 - Networks an order of magnitude larger than previously possible
Joint work with Clark Barrett, David Dill, Kyle Julian and Mykel Kochenderfer (CAV 2017 [KBD+17a]), supported by the FAA and Intel

- A sound and complete verification procedure

- Applied to the ACAS Xu case study
 - Networks an order of magnitude larger than previously possible

- Project still ongoing
Reluplex (cnt’d)

SMT-solver for quantifier-free linear real arithmetic + ReLUs

Based on the Simplex method for linear programming

Simplex + ReLUs = Reluplex

Applicable to other piece-wise linear functions

Key SMT idea: handle ReLUs lazily

As opposed to eager case splitting

Defer splitting for as long as possible

May not have to split at all!

But first, an introduction to Simplex
SMT-solver for quantifier-free linear real arithmetic + ReLUs
Reluplex (cnt’d)

- SMT-solver for quantifier-free linear real arithmetic + ReLUs
- Based on the *Simplex* method for linear programming
Reluplex (cnt’d)

- SMT-solver for quantifier-free linear real arithmetic + ReLUs
- Based on the *Simplex* method for linear programming
 - Simplex + ReLUs = Reluplex
Reluplex (cnt’d)

- SMT-solver for quantifier-free linear real arithmetic + ReLUs
- Based on the *Simplex* method for linear programming
 - Simplex + ReLUs = Reluplex
 - Applicable to other piece-wise linear functions
Reluplex (cnt’d)

- SMT-solver for quantifier-free linear real arithmetic + ReLUs
- Based on the *Simplex* method for linear programming
 - Simplex + ReLUs = Reluplex
 - Applicable to other piece-wise linear functions
- Key SMT idea: handle ReLUs *lazily*
Reluplex (cnt’d)

- SMT-solver for quantifier-free linear real arithmetic + ReLUs
- Based on the *Simplex* method for linear programming
 - Simplex + ReLUs = Reluplex
 - Applicable to other piece-wise linear functions
- Key SMT idea: handle ReLUs *lazily*
 - As opposed to eager case splitting
Reluplex (cnt’d)

- SMT-solver for quantifier-free linear real arithmetic + ReLUs
- Based on the *Simplex* method for linear programming
 - Simplex + ReLUs = Reluplex
 - Applicable to other piece-wise linear functions
- Key SMT idea: handle ReLUs *lazily*
 - As opposed to eager case splitting
 - *Defer* splitting for as long as possible
Reluplex (cnt’d)

- SMT-solver for quantifier-free linear real arithmetic + ReLUs
- Based on the Simplex method for linear programming
 - Simplex + ReLUs = Reluplex
 - Applicable to other piece-wise linear functions
- Key SMT idea: handle ReLUs lazily
 - As opposed to eager case splitting
 - Defer splitting for as long as possible
 - May not have to split at all!
Reluplex (cnt’d)

- SMT-solver for quantifier-free linear real arithmetic + ReLUs
- Based on the *Simplex* method for linear programming
 - Simplex + ReLUs = Reluplex
 - Applicable to other piece-wise linear functions
- Key SMT idea: handle ReLUs *lazily*
 - As opposed to eager case splitting
 - *Defer* splitting for as long as possible
 - May not have to split at all!
- But first, an introduction to Simplex
Simplex

Developed shortly after WW2 by George Dantzig

An algorithm for solving linear programs

Linear equations
Variable bounds
Objective function

Very efficient, still in use today
Simplex

- Developed shortly after WW2 by George Dantzig
Simplex

- Developed shortly after WW2 by George Dantzig

- An algorithm for solving linear programs
Simplex

- Developed shortly after WW2 by George Dantzig

- An algorithm for solving linear programs
 - Linear equations
Simplex

- Developed shortly after WW2 by George Dantzig

- An algorithm for solving linear programs
 - Linear equations
 - Variable bounds

Very efficient, still in use today
Simplex

- Developed shortly after WW2 by George Dantzig

- An algorithm for solving linear programs
 - Linear equations
 - Variable bounds
 - Objective function

Very efficient, still in use today
Simplex

- Developed shortly after WW2 by George Dantzig

- An algorithm for solving linear programs
 - Linear equations
 - Variable bounds
 - Objective function

- Very efficient, still in use today
Simplex (cnt’d)

Divided into two phases:
1. Find a feasible solution
2. Optimize with respect to objective function

We focus on phase 1, which is just a satisfiability check.
Simplex (cnt’d)

- Divided into two phases:
 1. Find a feasible solution
 2. Optimize with respect to objective function

We focus on phase 1, which is just a satisfiability check.
Simplex (cnt’d)

- Divided into two phases:
 1. Find a feasible solution
Simplex (cnt’d)

- Divided into two phases:
 1. Find a feasible solution
 2. Optimize with respect to objective function
Simplex (cnt’d)

- Divided into two phases:
 1. Find a feasible solution
 2. Optimize with respect to objective function

- We focus on phase 1, which is just a *satisfiability check*
Simplex: Phase 1

Iterative algorithm
Always maintain a variable assignment
Assignment always satisfies equations
But may violate bounds
In every iteration, attempt to reduce the overall infeasibility
Simplex: Phase 1

- Iterative algorithm
Simplex: Phase 1

- Iterative algorithm
- Always maintain a *variable assignment*
Simplex: Phase 1

- Iterative algorithm
- Always maintain a *variable assignment*
- Assignment always *satisfies equations*
Simplex: Phase 1

- Iterative algorithm
- Always maintain a *variable assignment*
- Assignment always *satisfies equations*
 - But may *violate bounds*
Simplex: Phase 1

- Iterative algorithm
- Always maintain a *variable assignment*
- Assignment always *satisfies equations*
 - But may *violate bounds*
- In every iteration, attempt to reduce the overall *infeasibility*
Variables partitioned into basic and non-basic variables. Non-basics are "free" and basics are "bounded". Non-basic assignment dictates basic assignment. This is how the equations are maintained.

In every iteration, we can perform:
1. An update: change the assignment of a non-basic variable and any affected basics.
2. A pivot: switch a basic and non-basic variable.
Variables partitioned into \textit{basic} and \textit{non-basic} variables
Variables partitioned into *basic* and *non-basic* variables

- Non-basics are “free”
Variables partitioned into *basic* and *non-basic* variables

- Non-basics are “free”
- Basics are “bounded”
Variables partitioned into *basic* and *non-basic* variables
- Non-basics are “free”
- Basics are “bounded”

Non-basic assignment dictates basic assignment
Variables partitioned into \textit{basic} and \textit{non-basic} variables
- Non-basics are “free”
- Basics are “bounded”

Non-basic assignment dictates basic assignment
- This is how the equations are maintained
Variables partitioned into *basic* and *non-basic* variables
- Non-basics are “free”
- Basics are “bounded”

Non-basic assignment dictates basic assignment
- This is how the equations are maintained

In every iteration, we can perform
- an update: change the assignment of a non-basic variable and any affected basics
- a pivot: switch a basic and non-basic variable
Variables partitioned into \textit{basic} and \textit{non-basic} variables

- Non-basics are “free”
- Basics are “bounded”

Non-basic assignment dictates basic assignment

- This is how the equations are maintained

In every iteration, we can perform

1. an \textit{update}: change the assignment of a non-basic variable
Simplex: Basics and Non-Basics

- Variables partitioned into *basic* and *non-basic* variables
 - Non-basics are “free”
 - Basics are “bounded”

- Non-basic assignment dictates basic assignment
 - This is how the equations are maintained

- In every iteration, we can perform
 1. an *update*: change the assignment of a non-basic variable
 - and any affected basics
Simplex: Basics and Non-Basics

- Variables partitioned into *basic* and *non-basic* variables
 - Non-basics are “free”
 - Basics are “bounded”

- Non-basic assignment dictates basic assignment
 - This is how the equations are maintained

- In every iteration, we can perform
 1. an *update*: change the assignment of a non-basic variable and any affected basics
 2. a *pivot*: switch a basic and non-basic variable
Simplex: Example

Hidden layer
Input layer
Output layer

Property being checked: for $x_1 \in [0,1]$, always $x_4 \in [0.5,1]$

Negated output property: $x_1 \in [0,1]$ and $x_4 \in [0.5,1]$
Simplex: Example

Property being checked: for \(x_1 \in [0, 1] \), always \(x_4 / \in [0.5, 1] \).

Negated output property: \(x_1 \in [0, 1] \) and \(x_4 \in [0.5, 1] \).
No activation functions
No activation functions

Property being checked: for $x_1 \in [0, 1]$, always $x_4 \notin [0.5, 1]$
No activation functions

Property being checked: for $x_1 \in [0, 1]$, always $x_4 \notin [0.5, 1]$
- Negated output property: $x_1 \in [0, 1]$ and $x_4 \in [0.5, 1]$
Equations for weighted sums:

\[x_2 - x_1 = 0 \]
\[x_3 + x_1 = 0 \]
\[x_4 - x_3 - x_2 = 0 \]

Bounds:

\[x_1 \in [0, 1] \]
\[x_4 \in [0.5, 1] \]
\[x_2, x_3 \text{ unbounded} \]

Technicality: replace constants by auxiliary variables.
Simplex: Example (cnt’d)

Equations for weighted sums:

\[x_2 - x_1 = 0 \]
\[x_3 + x_1 = 0 \]
\[x_4 - x_3 - x_2 = 0 \]

Bounds:
\[x_1 \in [0, 1] \]
\[x_4 \in [0.5, 1] \]
\[x_2, x_3 \text{ unbounded} \]

Technicality: replace constants by auxiliary variables
Simplex: Example (cnt’d)

Equations for weighted sums:

- Equations for weighted sums:
Simplex: Example (cnt’d)

Equations for weighted sums:

\[x_2 - x_1 = 0 \]
\[x_3 + x_1 = 0 \]
\[x_4 - x_3 - x_2 = 0 \]
Equations for weighted sums:

\[x_2 - x_1 = 0 \]
\[x_3 + x_1 = 0 \]
\[x_4 - x_3 - x_2 = 0 \]

Bounds:
Equations for weighted sums:

\[x_2 - x_1 = 0 \]
\[x_3 + x_1 = 0 \]
\[x_4 - x_3 - x_2 = 0 \]

Bounds:

\[x_1 \in [0, 1] \]
\[x_4 \in [0.5, 1] \]
\[x_2, x_3 \text{ unbounded} \]
Equations for weighted sums:

\[x_2 - x_1 = 0 \]
\[x_3 + x_1 = 0 \]
\[x_4 - x_3 - x_2 = 0 \]

Bounds:

\[x_1 \in [0, 1] \]
\[x_4 \in [0.5, 1] \]
\[x_2, x_3 \text{ unbounded} \]

Technicality: replace constants by *auxiliary* variables
Equations for weighted sums:

\[x_2 - x_1 = 0 \]
\[x_3 + x_1 = 0 \]
\[x_4 - x_3 - x_2 = 0 \]

Bounds:

\[x_1 \in [0, 1] \]
\[x_4 \in [0.5, 1] \]
\[x_2, x_3 \text{ unbounded} \]
\[x_5, x_6, x_7 \in [0, 0] \]

Technicality: replace constants by *auxiliary* variables
Equations for weighted sums:

\[x_2 - x_1 = x_5 \]
\[x_3 + x_1 = x_6 \]
\[x_4 - x_3 - x_2 = x_7 \]

Bounds:

\[x_1 \in [0, 1] \]
\[x_4 \in [0.5, 1] \]
\[x_2, x_3 \text{ unbounded} \]
\[x_5, x_6, x_7 \in [0, 0] \]

Technicality: replace constants by *auxiliary* variables
Simplex: Example (cnt’d)
\[x_5 = x_2 - x_1 \]
\[x_6 = x_3 + x_1 \]
\[x_7 = x_4 - x_3 - x_2 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
$x_5 = x_2 - x_1$

$x_6 = x_3 + x_1$

$x_7 = x_4 - x_3 - x_2$

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x_1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>x_2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x_3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>x_4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>x_5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>x_6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>x_7</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_5 = x_2 - x_1 \]
\[x_6 = x_3 + x_1 \]
\[x_7 = x_4 - x_3 - x_2 \]

Update:

\[x_4 := x_4 + 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_5 = x_2 - x_1 \]
\[x_6 = x_3 + x_1 \]
\[x_7 = x_4 - x_3 - x_2 \]

Update:
\[x_4 := x_4 + 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_5 = x_2 - x_1 \]
\[x_6 = x_3 + x_1 \]
\[x_7 = x_4 - x_3 - x_2 \]

Update:
\[x_4 := x_4 + 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(x_2)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_3)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_5 = x_2 - x_1\]
\[x_6 = x_3 + x_1\]
\[x_7 = x_4 - x_3 - x_2\]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_5 = x_2 - x_1 \]
\[x_6 = x_3 + x_1 \]
\[x_7 = x_4 - x_3 - x_2 \]

\begin{tabular}{cccc}
\hline
Lower B. & Var & Value & Upper B. \\
\hline
0 & \(x_1 \) & 0 & 1 \\
\hline
\hline
\hline
0.5 & \(x_4 \) & 0.5 & 1 \\
\hline
0 & \(x_5 \) & 0 & 0 \\
\hline
0 & \(x_6 \) & 0 & 0 \\
\hline
0 & \(x_7 \) & 0.5 & 0 \\
\hline
\end{tabular}
Simplex: Example (cnt’d)

\[x_5 = x_2 - x_1 \]
\[x_6 = x_3 + x_1 \]
\[x_7 = x_4 - x_3 - x_2 \]

Pivot: \(x_7, x_2 \)

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(x_2)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_3)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_5 = x_2 - x_1 \]
\[x_6 = x_3 + x_1 \]
\[x_7 = x_4 - x_3 - x_2 \]

\[x_2 = x_4 - x_3 - x_7 \]

Pivot: \(x_7, x_2 \)

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_5 = x_2 - x_1 \quad \leftrightarrow \quad x_5 = x_4 - x_3 - x_7 - x_1 \]
\[x_6 = x_3 + x_1 \]
\[x_7 = x_4 - x_3 - x_2 \quad \leftrightarrow \quad x_2 = x_4 - x_3 - x_7 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_5 = x_4 - x_3 - x_7 - x_1 \]
\[x_6 = x_3 + x_1 \]
\[x_2 = x_4 - x_3 - x_7 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_5 = x_4 - x_3 - x_7 - x_1 \]
\[x_6 = x_3 + x_1 \]
\[x_2 = x_4 - x_3 - x_7 \]

Update:
\[x_7 := x_7 - 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_5 = x_4 - x_3 - x_7 - x_1 \]
\[x_6 = x_3 + x_1 \]
\[x_2 = x_4 - x_3 - x_7 \]

Update:

\[x_7 := x_7 - 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_5 = x_4 - x_3 - x_7 - x_1 \]
\[x_6 = x_3 + x_1 \]
\[x_2 = x_4 - x_3 - x_7 \]

Update:
\[x_7 := x_7 - 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
\begin{align*}
x_5 &= x_4 - x_3 - x_7 - x_1 \\
x_6 &= x_3 + x_1 \\
x_2 &= x_4 - x_3 - x_7
\end{align*}

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var \</th>
<th>Value \</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>(x_2)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_5 = x_4 - x_3 - x_7 - x_1 \]
\[x_6 = x_3 + x_1 \]
\[x_2 = x_4 - x_3 - x_7 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_5 = x_4 - x_3 - x_7 - x_1 \]
\[x_6 = x_3 + x_1 \]
\[x_2 = x_4 - x_3 - x_7 \]

Pivot: \(x_5, x_1 \)

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_5 = x_4 - x_3 - x_7 - x_1 \quad \leftarrow \quad x_1 = x_4 - x_3 - x_7 - x_5 \]

\[x_6 = x_3 + x_1 \]

\[x_2 = x_4 - x_3 - x_7 \]

Pivot: \(x_5, x_1 \)

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(x_2)</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_3)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_5 = x_4 - x_3 - x_7 - x_1 \quad \leftarrow \quad x_1 = x_4 - x_3 - x_7 - x_5 \]
\[x_6 = x_3 + x_1 \quad \leftarrow \quad x_6 = x_4 - x_7 - x_5 \]
\[x_2 = x_4 - x_3 - x_7 \]

Pivot: \(x_5, x_1 \)

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_1 = x_4 - x_3 - x_7 - x_5 \]
\[x_6 = x_4 - x_7 - x_5 \]
\[x_2 = x_4 - x_3 - x_7 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_1 = x_4 - x_3 - x_7 - x_5 \]
\[x_6 = x_4 - x_7 - x_5 \]
\[x_2 = x_4 - x_3 - x_7 \]

Update:
\[x_5 := x_5 - 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_1 = x_4 - x_3 - x_7 - x_5 \]
\[x_6 = x_4 - x_7 - x_5 \]
\[x_2 = x_4 - x_3 - x_7 \]

Update:
\[x_5 := x_5 - 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_1 = x_4 - x_3 - x_7 - x_5 \]
\[x_6 = x_4 - x_7 - x_5 \]
\[x_2 = x_4 - x_3 - x_7 \]

Update:
\[x_5 := x_5 - 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_1 = x_4 - x_3 - x_7 - x_5 \]
\[x_6 = x_4 - x_7 - x_5 \]
\[x_2 = x_4 - x_3 - x_7 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
\[x_1 = x_4 - x_3 - x_7 - x_5 \]
\[x_6 = x_4 - x_7 - x_5 \]
\[x_2 = x_4 - x_3 - x_7 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplex: Example (cnt’d)

\[x_1 = x_4 - x_3 - x_7 - x_5 \]
\[x_6 = x_4 - x_7 - x_5 \]
\[x_2 = x_4 - x_3 - x_7 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The Simplex Calculus

A simplex configuration:

Distinguished Symbols

- SAT
- UNSAT

Or a tuple $\langle B, T, l, u, \alpha \rangle$, where:

- B: set of basic variables
- T: a set of equations
- l, u: lower and upper bounds
- α: an assignment function from variables to reals

For notation:

- Slack $+ (x_i) = \{x_j / x_j \in B | (T_{i,j} > 0 \land \alpha(x_j) < u(x_j)) \lor (T_{i,j} < 0 \land \alpha(x_j) > l(x_j))\}$
- Slack $- (x_i) = \{x_j / x_j \in B | (T_{i,j} < 0 \land \alpha(x_j) < u(x_j)) \lor (T_{i,j} > 0 \land \alpha(x_j) > l(x_j))\}$
A simplex configuration:
The Simplex Calculus

- A simplex configuration:
 - Distinguished symbols SAT or UNSAT
A simplex configuration:

- Distinguished symbols SAT or UNSAT
- Or a tuple $\langle B, T, l, u, \alpha \rangle$, where:

 - B: set of basic variables
 - T: a set of equations
 - l, u: lower and upper bounds
 - α: an assignment function from variables to reals

For notation:

- $\text{slack}^+ (x_i) = \{ x_j / \in B | (T_{i,j} > 0 \land \alpha(x_j) < l(x_j)) \lor (T_{i,j} < 0 \land \alpha(x_j) > u(x_j)) \}$
- $\text{slack}^- (x_i) = \{ x_j / \in B | (T_{i,j} < 0 \land \alpha(x_j) < l(x_j)) \lor (T_{i,j} > 0 \land \alpha(x_j) > u(x_j)) \}$
A simplex configuration:
- Distinguished symbols SAT or UNSAT
- Or a tuple \(\langle B, T, l, u, \alpha \rangle \), where:
 - \(B \): set of basic variables
A simplex configuration:

- Distinguished symbols SAT or UNSAT
- Or a tuple $\langle B, T, l, u, \alpha \rangle$, where:
 - B: set of basic variables
 - T: a set of equations
A simplex configuration:

- Distinguished symbols SAT or UNSAT
- Or a tuple $\langle B, T, l, u, \alpha \rangle$, where:
 - B: set of basic variables
 - T: a set of equations
 - l, u: lower and upper bounds
A simplex configuration:

- Distinguished symbols SAT or UNSAT
- Or a tuple $\langle B, T, l, u, \alpha \rangle$, where:
 - B: set of basic variables
 - T: a set of equations
 - l, u: lower and upper bounds
 - α: an assignment function from variables to reals
The Simplex Calculus

- A simplex configuration:
 - Distinguished symbols SAT or UNSAT
 - Or a tuple \(\langle B, T, l, u, \alpha \rangle \), where:
 - \(B \): set of basic variables
 - \(T \): a set of equations
 - \(l, u \): lower and upper bounds
 - \(\alpha \): an assignment function from variables to reals

- For notation:
A simplex configuration:
- Distinguished symbols SAT or UNSAT
- Or a tuple $\langle B, T, l, u, \alpha \rangle$, where:
 - B: set of basic variables
 - T: a set of equations
 - l, u: lower and upper bounds
 - α: an assignment function from variables to reals

For notation:

$$\text{slack}^+(x_i) = \{x_j \notin B \mid (T_{i,j} > 0 \land \alpha(x_j) < u(x_j)) \lor (T_{i,j} < 0 \land \alpha(x_j) > l(x_j))\}$$

$$\text{slack}^-(x_i) = \{x_j \notin B \mid (T_{i,j} < 0 \land \alpha(x_j) < u(x_j)) \lor (T_{i,j} > 0 \land \alpha(x_j) > l(x_j))\}$$
The Simplex Calculus (cnt’d)

Pivot 1

\[x_i \in B, \alpha(x_i) < l(x_i), x_j \in \text{slack}^+ \]

\[T := \text{pivot}(T, i, j), B := B \cup \{x_j\} \setminus \{x_i\} \]

Pivot 2

\[x_i \in B, \alpha(x_i) > u(x_i), x_j \in \text{slack}^- \]

\[T := \text{pivot}(T, i, j), B := B \cup \{x_j\} \setminus \{x_i\} \]

Update

\[x_j / \in B, \alpha(x_j) < l(x_j) \lor \alpha(x_j) > u(x_j), l(x_j) \leq \alpha(x_j) + \delta \leq u(x_j) \]

\[\alpha := \text{update}(\alpha, x_j, \delta) \]

Failure

\[x_i \in B, (\alpha(x_i) < l(x_i) \land \text{slack}^+ \setminus \{x_i\} = \emptyset) \lor (\alpha(x_i) > u(x_i) \land \text{slack}^- \setminus \{x_i\} = \emptyset) \]

UNSAT

Success

\[\forall x_i \in X. l(x_i) \leq \alpha(x_i) \leq u(x_i) \]

SAT
The Simplex Calculus (cnt’d)

Pivot

\[x_i \in B, \quad \alpha(x_i) < l(x_i), \quad x_j \in \text{slack}^+(x_i) \]

\[T := \text{pivot}(T, i, j), \quad B := B \cup \{x_j\} \setminus \{x_i\} \]
The Simplex Calculus (cnt’d)

\[\begin{align*}
\text{Pivot}_1: & \quad x_i \in B, \quad \alpha(x_i) < l(x_i), \quad x_j \in \text{slack}^+(x_i) \\
& \quad T := \text{pivot}(T, i, j), \quad B := B \cup \{x_j\} \setminus \{x_i\}
\end{align*}\]

\[\begin{align*}
\text{Pivot}_2: & \quad x_i \in B, \quad \alpha(x_i) > u(x_i), \quad x_j \in \text{slack}^−(x_i) \\
& \quad T := \text{pivot}(T, i, j), \quad B := B \cup \{x_j\} \setminus \{x_i\}
\end{align*}\]
The Simplex Calculus (cnt’d)

Pivot 1 \[x_i \in B, \quad \alpha(x_i) < l(x_i), \quad x_j \in \text{slack}^+(x_i) \]
\[T := \text{pivot}(T, i, j), \quad B := B \cup \{x_j\} \setminus \{x_i\} \]

Pivot 2 \[x_i \in B, \quad \alpha(x_i) > u(x_i), \quad x_j \in \text{slack}^-(x_i) \]
\[T := \text{pivot}(T, i, j), \quad B := B \cup \{x_j\} \setminus \{x_i\} \]

Update \[x_j \notin B, \quad \alpha(x_j) < l(x_j) \lor \alpha(x_j) > u(x_j), \quad l(x_j) \leq \alpha(x_j) + \delta \leq u(x_j) \]
\[\alpha := \text{update}(\alpha, x_j, \delta) \]
The Simplex Calculus (cnt’d)

Pivot 1
\[x_i \in B, \quad \alpha(x_i) < l(x_i), \quad x_j \in \text{slack}^+(x_i) \]
\[T := \text{pivot}(T, i, j), \quad B := B \cup \{x_j\} \setminus \{x_i\} \]

Pivot 2
\[x_i \in B, \quad \alpha(x_i) > u(x_i), \quad x_j \in \text{slack}^-(x_i) \]
\[T := \text{pivot}(T, i, j), \quad B := B \cup \{x_j\} \setminus \{x_i\} \]

Update
\[x_j \notin B, \quad (\alpha(x_j) < l(x_j) \vee \alpha(x_j) > u(x_j)), \quad l(x_j) \leq \alpha(x_j) + \delta \leq u(x_j) \]
\[\alpha := \text{update}(\alpha, x_j, \delta) \]

Failure
\[x_i \in B, \quad (\alpha(x_i) < l(x_i) \land \text{slack}^+(x_i) = \emptyset) \lor (\alpha(x_i) > u(x_i) \land \text{slack}^-(x_i) = \emptyset) \]
\[\text{UNSAT} \]
The Simplex Calculus (cnt’d)

Pivot 1

\[
x_i \in \mathcal{B}, \quad \alpha(x_i) < l(x_i), \quad x_j \in \text{slack}^+(x_i)
\]

\[
T := \text{pivot}(T, i, j), \quad \mathcal{B} := \mathcal{B} \cup \{x_j\} \setminus \{x_i\}
\]

Pivot 2

\[
x_i \in \mathcal{B}, \quad \alpha(x_i) > u(x_i), \quad x_j \in \text{slack}^-(x_i)
\]

\[
T := \text{pivot}(T, i, j), \quad \mathcal{B} := \mathcal{B} \cup \{x_j\} \setminus \{x_i\}
\]

Update

\[
x_j \notin \mathcal{B}, \quad \alpha(x_j) < l(x_j) \lor \alpha(x_j) > u(x_j), \quad l(x_j) \leq \alpha(x_j) + \delta \leq u(x_j)
\]

\[
\alpha := \text{update}(\alpha, x_j, \delta)
\]

Failure

\[
x_i \in \mathcal{B}, \quad (\alpha(x_i) < l(x_i) \land \text{slack}^+(x_i) = \emptyset) \lor (\alpha(x_i) > u(x_i) \land \text{slack}^-(x_i) = \emptyset)
\]

\[
\text{UNSAT}
\]

Success

\[
\forall x_i \in \mathcal{X}. \quad l(x_i) \leq \alpha(x_i) \leq u(x_i)
\]

\[
\text{SAT}
\]
Properties of Simplex

Theorem (Soundness and Completeness of Simplex)
The simplex algorithm is sound and complete*

Soundness:
SAT \Rightarrow assignment is correct
UNSAT \Rightarrow no assignment exists

Completeness: depends on variable selection strategy
Bland’s rule: guarantees termination
Always pick variables with smallest index
Prevents cycling
But unfortunately quite slow
Better selection strategies exist (e.g., steepest edge)

Problem is in P, unknown whether simplex is in P
Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete

Soundness:
- SAT \Rightarrow assignment is correct
- UNSAT \Rightarrow no assignment exists

Completeness: depends on variable selection strategy
- Bland’s rule: guarantees termination
 - Always pick variables with smallest index
 - Prevents cycling
 - But unfortunately quite slow
- Better selection strategies exist (e.g., steepest edge)

Problem is in \mathbf{P}, unknown whether simplex is in \mathbf{P}
Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete

- Soundness:

\[SAT \Rightarrow \text{assignment is correct} \]
\[UNSAT \Rightarrow \text{no assignment exists} \]

- Completeness: depends on variable selection strategy

Bland's rule: guarantees termination
Always pick variables with smallest index
Prevents cycling

But unfortunately quite slow

Better selection strategies exist (e.g., steepest edge)

Problem is in \(P \), unknown whether simplex is in \(P \)
Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

- Soundness:
 - SAT \Rightarrow assignment is correct

*Guy Katz (HUJI)
Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete

- **Soundness:**
 - \(\text{SAT} \Rightarrow \text{assignment is correct} \)
 - \(\text{UNSAT} \Rightarrow \text{no assignment exists} \)

- **Completeness:** depends on variable selection strategy
 - Bland’s rule: guarantees termination
 - Always pick variables with smallest index
 - Prevents cycling
 - But unfortunately quite slow
 - Better selection strategies exist (e.g., steepest edge)

- Problem is in \(\text{P} \), unknown whether simplex is in \(\text{P} \)
Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

- **Soundness:**
 - SAT \Rightarrow assignment is correct
 - UNSAT \Rightarrow no assignment exists

- **Completeness:** depends on variable selection strategy

*Guy Katz (HUJI)
Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

- **Soundness:**
 - SAT \Rightarrow assignment is correct
 - UNSAT \Rightarrow no assignment exists

- **Completeness:** depends on variable selection strategy
 - *Bland’s rule:* guarantees termination
Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete

- **Soundness:**
 - SAT \Rightarrow assignment is correct
 - UNSAT \Rightarrow no assignment exists

- **Completeness:** depends on variable selection strategy

- **Bland’s rule:** guarantees termination
 - Always pick variables with smallest index
Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete

- **Soundness:**
 - SAT \Rightarrow assignment is correct
 - UNSAT \Rightarrow no assignment exists

- **Completeness:** depends on variable selection strategy

- **Bland’s rule:** guarantees termination
 - Always pick variables with smallest index
 - Prevents cycling

But unfortunately quite slow
Better selection strategies exist (e.g., steepest edge)
Problem is in P, unknown whether simplex is in $P
Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

- **Soundness:**
 - SAT \Rightarrow assignment is correct
 - UNSAT \Rightarrow no assignment exists

- **Completeness:** depends on variable selection strategy
 - **Bland’s rule:** guarantees termination
 - Always pick variables with smallest index
 - Prevents cycling
 - But unfortunately quite slow
Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete

- **Soundness:**
 - SAT ⇒ assignment is correct
 - UNSAT ⇒ no assignment exists

- **Completeness:** depends on variable selection strategy

 - **Bland’s rule:** guarantees termination
 - Always pick variables with smallest index
 - Prevents cycling
 - But unfortunately quite slow

- Better selection strategies exist (e.g., *steepest edge*)
Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

- **Soundness:**
 - SAT \Rightarrow assignment is correct
 - UNSAT \Rightarrow no assignment exists

- **Completeness:** depends on variable selection strategy

 - **Bland's rule:** guarantees termination
 - Always pick variables with smallest index
 - Prevents cycling
 - But unfortunately quite slow

- Better selection strategies exist (e.g., *steepest edge*)

- Problem is in \mathbb{P}, unknown whether simplex is in \mathbb{P}
From Simplex to Reluplex

Each ReLU node x represented as two variables:
- x_w to represent the (input) weighted sum
- x_a to represent the (output) activation result

x_w and x_a change independently

May violate ReLU constraints

Similar to bound constraints

Fix incrementally

Use pivots and updates, same as before
From Simplex to Reluplex

- Each ReLU node x represented as two variables:
Each ReLU node x represented as two variables:
- x^w to represent the (input) **weighted sum**
Each ReLU node x represented as two variables:
- x^w to represent the (input) \textit{weighted sum}
- x^a to represent the (output) \textit{activation result}
From Simplex to Reluplex

- Each ReLU node x represented as two variables:
 - x^w to represent the (input) weighted sum
 - x^a to represent the (output) activation result
- x^w and x^a change independently
From Simplex to Reluplex

Each ReLU node x represented as two variables:

- x^w to represent the (input) \textit{weighted sum}
- x^a to represent the (output) \textit{activation result}

- x^w and x^a change independently
 - May violate ReLU constraints
Each ReLU node x represented as two variables:
- x^w to represent the (input) \textit{weighted sum}
- x^a to represent the (output) \textit{activation result}

- x^w and x^a change independently
 - May violate ReLU constraints
 - Similar to bound constraints
Each ReLU node x represented as two variables:
- x^w to represent the (input) \textit{weighted sum}
- x^a to represent the (output) \textit{activation result}

- x^w and x^a change independently
 - May violate ReLU constraints
 - Similar to bound constraints
 - Fix \textit{incrementally}
Each ReLU node x represented as two variables:

- x^w to represent the (input) weighted sum
- x^a to represent the (output) activation result

x^w and x^a change independently

- May violate ReLU constraints
- Similar to bound constraints
- Fix incrementally

Use pivots and updates, same as before
Reluplex: Example

\[
\begin{align*}
\text{ReLU} & \\
&= \max(0, x) \\
&= \begin{cases} \\
0 & \text{if } x \leq 0 \\
x & \text{if } x > 0
\end{cases}
\end{align*}
\]
Reluplex: Example

\[x_1 \rightarrow x_2 \rightarrow x_4 \]

\[x_1 \rightarrow x_3 \rightarrow x_4 \]

\[x_1 \rightarrow \text{ReLU} \rightarrow x_2 \rightarrow \text{ReLU} \rightarrow x_4 \]

\[x_1 \rightarrow \text{ReLU} \rightarrow x_3 \rightarrow \text{ReLU} \rightarrow x_4 \]
Reluplex: Example (cnt’d)

Equations for weighted sums:

\[x_5 = x_w^2 - x_1 \]

\[x_6 = x_w^3 + x_1 \]

\[x_7 = x_4 - x_a^3 - x_a^2 \]

Bounds:

\[x_1 \in [0, 1] \]

\[x_4 \in [0.5, 1] \]

\[x_w^2, x_w^3 \text{ unbounded} \]

\[x_a^2, x_a^3 \in [0, \infty) \]

\[x_5, x_6, x_7 \in [0, 0] \]
Equations for weighted sums:

\[x_5 = x_w^2 - x_1 \]
\[x_6 = x_w^3 + x_1 \]
\[x_7 = x_4 - x_a^3 - x_a^2 \]

Bounds:

\[x_1 \in [0, 1] \]
\[x_4 \in [0, 1] \]
\[x_w^2, x_w^3 \text{ unbounded} \]
\[x_a^2, x_a^3 \in [0, \infty) \]
\[x_5, x_6, x_7 \in [0, 0] \]
Equations for weighted sums:
Equations for weighted sums:

\[
\begin{align*}
x_5 &= x_2^w - x_1 \\
x_6 &= x_3^w + x_1 \\
x_7 &= x_4 - x_3^a - x_2^a
\end{align*}
\]
Equations for weighted sums:

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_7 = x_4 - x_3^a - x_2^a \]

Bounds:
Reluplex: Example (cnt’d)

• Equations for weighted sums:

\[
\begin{align*}
 x_5 &= x_2^w - x_1 \\
 x_6 &= x_3^w + x_1 \\
 x_7 &= x_4 - x_3^a - x_2^a
\end{align*}
\]

• Bounds:

\[
\begin{align*}
 x_1 &\in [0, 1] \\
 x_4 &\in [0.5, 1] \\
 x_2^w, x_3^w &\text{ unbounded} \\
 x_2^a, x_3^a &\in [0, \infty) \\
 x_5, x_6, x_7 &\in [0, 0]
\end{align*}
\]
Reluplex: Example (cnt’d)
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_7 = x_4 - x_3^a - x_2^a \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(x_2^w)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_7 = x_4 - x_3^a - x_2^a \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Vari</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(x_2^w)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_7 = x_4 - x_3^a - x_2^a \]

Update:
\[x_4 := x_4 + 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(x_2^w)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(x_3^w)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\(x_5 = x^w_2 - x_1 \)
\(x_6 = x^w_3 + x_1 \)
\(x_7 = x_4 - x^a_3 - x^a_2 \)

Update:
\(x_4 := x_4 + 0.5 \)

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x^w_2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x^a_2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x^w_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x^a_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_7 = x_4 - x_3^a - x_2^a \]

Update:
\[x_4 := x_4 + 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_7 = x_4 - x_3^a - x_2^a \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(x_2^w)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_7 = x_4 - x_3^a - x_2^a \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(x_2^w)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_7 = x_4 - x_3^a - x_2^a \]

Pivot: \(x_7, x_2^a \)

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_7 = x_4 - x_3^a - x_2^a \]

Pivot: \(x_7, x_2^a \)

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(x_2^w)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

Pivot: \(x_7, x_2^a \)

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

Update:
\[x_7 := x_7 - 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

Update:
\[x_7 := x_7 - 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[
x_5 = x^w_2 - x_1 \\
x_6 = x^w_3 + x_1 \\
x^a_2 = x_4 - x^a_3 - x_7
\]

Update:
\[
x_7 := x_7 - 0.5
\]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x^w_2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x^a_2)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x^w_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x^a_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

\[\begin{array}{c|c|c|c}
\text{Lower B.} & \text{Var} & \text{Value} & \text{Upper B.} \\
\hline
0 & x_1 & 0 & 1 \\
\hline
& x_2^w & 0 & \\
\hline
0 & x_2^a & 0.5 & \\
\hline
& x_3^w & 0 & \\
\hline
0 & x_3^a & 0 & \\
\hline
0.5 & x_4 & 0.5 & 1 \\
\hline
0 & x_5 & 0 & 0 \\
\hline
0 & x_6 & 0 & 0 \\
\hline
0 & x_7 & 0 & 0 \\
\end{array} \]
Reluplex: Example (cnt’d)

\[
x_5 = x_2^w - x_1 \\
x_6 = x_3^w + x_1 \\
x_2^a = x_4 - x_3^a - x_7
\]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x_1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>x_2^w</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>x_2^a</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>x_3^w</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>x_3^a</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>x_4</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>x_5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>x_6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>x_7</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

Update:
\[x_2^w := x_2^w + 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

Update:
\[x_2^w := x_2^w + 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

Update:
\[x_2^w := x_2^w + 0.5 \]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Lower B.} & \text{Var} & \text{Value} & \text{Upper B.} \\
\hline
0 & x_1 & 0 & 1 \\
\hline
 & x_2^w & 0.5 & \\
\hline
0 & x_2^a & 0.5 & \\
\hline
 & x_3^w & 0 & \\
\hline
0 & x_3^a & 0 & \\
\hline
0.5 & x_4 & 0.5 & 1 \\
\hline
0 & x_5 & 0.5 & 0 \\
\hline
0 & x_6 & 0 & 0 \\
\hline
0 & x_7 & 0 & 0 \\
\hline
\end{array}
\]
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_5 = x_2^w - x_1 \]
\[x_6 = x_3^w + x_1 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
$$x_5 = x_2^w - x_1$$

$$x_6 = x_3^w + x_1$$

$$x_2^a = x_4 - x_3^a - x_7$$

Pivot: x_5, x_1

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x_1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>x_2^w</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>x_2^a</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x_3^w</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>x_3^a</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>x_4</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>x_5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>x_6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>x_7</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[
x_5 = x_2^w - x_1
\]

\[
x_6 = x_3^w + x_1
\]

\[
x_2^a = x_4 - x_3^a - x_7
\]

Pivot: \(x_5, x_1\)

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_1 = x^w_2 - x_5 \]
\[x_6 = x^w_3 + x^w_2 - x_5 \]
\[x^a_2 = x_4 - x^a_3 - x_7 \]

Pivot: \(x_5, x_1 \)

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(x^w_2)</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x^a_2)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>(x^w_3)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x^a_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
\[x_1 = x_2^w - x_5 \]
\[x_6 = x_3^w + x_2^w - x_5 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(x_2^w)</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_1 = x_2^w - x_5 \]
\[x_6 = x_3^w + x_2^w - x_5 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

Update:
\[x_5 := x_5 - 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[
\begin{align*}
 x_1 &= x_2^w - x_5 \\
 x_6 &= x_3^w + x_2^w - x_5 \\
 x_2^a &= x_4 - x_3^a - x_7
\end{align*}
\]

Update:

\[x_5 := x_5 - 0.5\]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_1 = x^w_2 - x_5 \]
\[x_6 = x^w_3 + x^w_2 - x_5 \]
\[x^a_2 = x_4 - x^a_3 - x_7 \]

Update:
\[x_5 := x_5 - 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x^w_2)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x^a_2)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x^w_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x^a_3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_1 = x_2^w - x_5\]
\[x_6 = x_3^w + x_2^w - x_5\]
\[x_2^a = x_4 - x_3^a - x_7\]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_1 = x_2^w - x_5 \]
\[x_6 = x_3^w + x_2^w - x_5 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>(x_2^w)</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>(x_2^a)</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_1 = x_2^w - x_5 \]
\[x_6 = x_3^w + x_2^w - x_5 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

Pivot: \(x_6, x_3^w \)

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
\(x_1 = x_2^w - x_5 \)
\(x_6 = x_3^w + x_2^w - x_5 \)
\(x_2^a = x_4 - x_3^a - x_7 \)

Pivot: \(x_6, x_3^w \)

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_1 = x_2^w - x_5 \]
\[x_3^w = x_6 - x_2^w + x_5 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_1 = x_2^w - x_5 \]
\[x_3^w = x_6 - x_2^w + x_5 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

Update:
\[x_6 := x_6 - 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_1 = x_2^w - x_5 \]
\[x_3^w = x_6 - x_2^w + x_5 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

Update:
\[x_6 := x_6 - 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_1 = x_2^w - x_5 \]
\[x_3^w = x_6 - x_2^w + x_5 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

Update:
\[x_6 := x_6 - 0.5 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[
x_1 = x_2^w - x_5
\]
\[
x_3^w = x_6 - x_2^w + x_5
\]
\[
x_2^a = x_4 - x_3^a - x_7
\]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_2^w)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^w)</td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reluplex: Example (cnt’d)

\[x_1 = x_2^w - x_5 \]
\[x_3^w = x_6 - x_2^w + x_5 \]
\[x_2^a = x_4 - x_3^a - x_7 \]

<table>
<thead>
<tr>
<th>Lower B.</th>
<th>Var</th>
<th>Value</th>
<th>Upper B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_1)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(x_2^w)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_2^a)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x_3^w)</td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(x_3^a)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>(x_4)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(x_7)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
ReLU

Property: \(x_1 \in [0, 1]\) and \(x_4 \in [0.5, 1]\)
Property: $x_1 \in [0, 1]$ and $x_4 \in [0.5, 1]$
Property: \(x_1 \in [0, 1] \) and \(x_4 \in [0.5, 1] \)
The Reluplex Calculus

A Reluplex configuration:

\[\langle B, T, l, u, \alpha, R \rangle \]

- \(B \): set of basic variables
- \(T \): set of equations
- \(l, u \): lower and upper bounds
- \(\alpha \): assignment function from variables to reals
- \(R \subset X \times X \): set of ReLU connections
A Reluplex configuration:
A Reluplex configuration:
- Distinguished symbols SAT or UNSAT
A Reluplex configuration:

- Distinguished symbols SAT or UNSAT
- Or a tuple $\langle B, T, l, u, \alpha, R \rangle$, where:
 - B: set of basic variables
 - T: a set of equations
 - l, u: lower and upper bounds
 - α: an assignment function from variables to reals
 - $R \subseteq X \times X$ is a set of ReLU connections
A Reluplex configuration:

- Distinguished symbols SAT or UNSAT
- Or a tuple \(\langle B, T, l, u, \alpha, R \rangle \), where:
 - \(B \): set of basic variables
The Reluplex Calculus

A Reluplex configuration:

- Distinguished symbols SAT or UNSAT
- Or a tuple \(\langle B, T, l, u, \alpha, R \rangle \), where:
 - \(B \): set of basic variables
 - \(T \): a set of equations
A Reluplex configuration:

- Distinguished symbols SAT or UNSAT
- Or a tuple $\langle \mathcal{B}, T, l, u, \alpha, R \rangle$, where:
 - \mathcal{B}: set of basic variables
 - T: a set of equations
 - l, u: lower and upper bounds
A Reluplex configuration:

- Distinguished symbols SAT or UNSAT
- Or a tuple $\langle B, T, l, u, \alpha, R \rangle$, where:
 - B: set of basic variables
 - T: a set of equations
 - l, u: lower and upper bounds
 - α: an assignment function from variables to reals

Guy Katz (HUJI)
Verification of ML
UnRAVeL 2019
A Reluplex configuration:

- Distinguished symbols SAT or UNSAT
- Or a tuple $\langle B, T, l, u, \alpha, R \rangle$, where:
 - B: set of basic variables
 - T: a set of equations
 - l, u: lower and upper bounds
 - α: an assignment function from variables to reals
 - $R \subseteq X \times X$ is a set of ReLU connections
The Reluplex Calculus (cnt’d)

Pivot

1, Pivot 2, Update and Failure are as before

SAT iff at least one leaf of the derivation tree is SAT

Update \(w_x^i / \in B \), \(\langle x_i, x_j \rangle \in R \), \(\alpha(x_j) \neq \max(0, \alpha(x_i)) \), \(\alpha(x_j) \geq 0 \)

\(\alpha := \text{update}(\alpha, x_i, \alpha(x_j) - \alpha(x_i)) \)

Update \(a_x^j / \in B \), \(\langle x_i, x_j \rangle \in R \), \(\alpha(x_j) \neq \max(0, \alpha(x_i)) \)

\(\alpha := \text{update}(\alpha, x_j, \max(0, \alpha(x_i)) - \alpha(x_j)) \)

PivotForRelu

\(x_i \in B \), \(\exists x_l \).

\(\langle x_i, x_l \rangle \in R \lor \langle x_l, x_i \rangle \in R \), \(x_j / \in B \), \(T_{i,j} \neq 0 \)

\(T := \text{pivot}(T, i, j) \), \(B := B \cup \{x_j\} \backslash \{x_i\} \)

ReluSplit

\(\langle x_i, x_j \rangle \in R \), \(l(x_i) < 0 \), \(u(x_i) > 0 \)

\(u(x_i) := 0 \), \(l(x_i) := 0 \)

ReluSuccess

\(\forall x \in X. \ l(x) \leq \alpha(x) \leq u(x) \), \(\forall \langle x_w, x_a \rangle \in R. \ \alpha(x_a) = \max(0, \alpha(x_w)) \)

SAT

Guy Katz (HUJI)
Pivot\textsubscript{1}, Pivot\textsubscript{2}, Update and Failure are as before.
The Reluplex Calculus (cnt’d)

- Pivot_1, Pivot_2, Update and Failure are as before
- SAT iff at least one leaf of the derivation tree is SAT
The Reluplex Calculus (cnt’d)

- Pivot₁, Pivot₂, Update and Failure are as before

- SAT iff at least one leaf of the derivation tree is SAT

\[
\text{Update}_w \quad \begin{array}{c}
 x_i \notin \mathcal{B}, \quad \langle x_i, x_j \rangle \in R, \quad \alpha(x_j) \neq \max (0, \alpha(x_i)), \quad \alpha(x_j) \geq 0 \\
 \alpha := \text{update} (\alpha, x_i, \alpha(x_j) - \alpha(x_i))
\end{array}
\]
Pivot₁, Pivot₂, Update and Failure are as before

SAT iff at least one leaf of the derivation tree is SAT

\[
\text{Update}_{w} \quad \frac{x_i \notin B, \ \langle x_i, x_j \rangle \in R, \ \alpha(x_j) \neq \max(0, \alpha(x_i)), \ \alpha(x_j) \geq 0}{\alpha := \text{update} (\alpha, x_i, \alpha(x_j) - \alpha(x_i))}
\]

\[
\text{Update}_{a} \quad \frac{x_j \notin B, \ \langle x_i, x_j \rangle \in R, \ \alpha(x_j) \neq \max(0, \alpha(x_i))}{\alpha := \text{update} (\alpha, x_j, \max(0, \alpha(x_i)) - \alpha(x_j))}
\]
The Reluplex Calculus (cnt’d)

- Pivot₁, Pivot₂, Update and Failure are as before
- SAT iff at least one leaf of the derivation tree is SAT

\[
\text{Update}_w \quad \frac{x_i \notin B, \ (x_i, x_j) \in R, \ \alpha(x_j) \neq \max(0, \alpha(x_i)), \ \alpha(x_j) \geq 0}{\alpha := \text{update}(\alpha, x_i, \alpha(x_j) - \alpha(x_i))}
\]

\[
\text{Update}_a \quad \frac{x_j \notin B, \ (x_i, x_j) \in R, \ \alpha(x_j) \neq \max(0, \alpha(x_i))}{\alpha := \text{update}(\alpha, x_j, \max(0, \alpha(x_i)) - \alpha(x_j))}
\]

\[
\text{PivotForRelu} \quad \frac{x_i \in B, \ \exists x_l. \ (x_i, x_l) \in R \lor (x_l, x_i) \in R, \ x_j \notin B, \ T_{i,j} \neq 0}{T := \text{pivot}(T, i, j), \ B := B \cup \{x_j\} \setminus \{x_i\}}
\]
The Reluplex Calculus (cnt’d)

- **Pivot**: Pivot₁, Pivot₂, Update and Failure are as before
- **SAT** iff at least one leaf of the derivation tree is SAT

\[
\text{Update}_{w} \quad \frac{x_{i} \notin B, \langle x_{i}, x_{j} \rangle \in R, \alpha(x_{j}) \neq \max(0, \alpha(x_{i})), \alpha(x_{j}) \geq 0}{\alpha := \text{update}(\alpha, x_{i}, \alpha(x_{j}) - \alpha(x_{i}))}
\]

\[
\text{Update}_{a} \quad \frac{x_{j} \notin B, \langle x_{i}, x_{j} \rangle \in R, \alpha(x_{j}) \neq \max(0, \alpha(x_{i}))}{\alpha := \text{update}(\alpha, x_{j}, \max(0, \alpha(x_{i}))) - \alpha(x_{j})}
\]

\[
\text{PivotForRelu} \quad \frac{x_{i} \in B, \exists x_{l}. \langle x_{i}, x_{l} \rangle \in R \lor \langle x_{l}, x_{i} \rangle \in R, x_{j} \notin B, T_{i,j} \neq 0}{T := \text{pivot}(T, i, j), \ B := B \cup \{x_{j}\} \setminus \{x_{i}\}}
\]

\[
\text{ReluSplit} \quad \frac{\langle x_{i}, x_{j} \rangle \in R, \ l(x_{i}) < 0, \ u(x_{i}) > 0}{u(x_{i}) := 0 \quad l(x_{i}) := 0}
\]
The Reluplex Calculus (cnt’d)

- **Pivot₁, Pivot₂, Update and Failure** are as before

- **SAT iff at least one leaf of the derivation tree is SAT**

\[
\text{Update}_w \quad \frac{x_i \notin \mathcal{B}, \langle x_i, x_j \rangle \in R, \ \alpha(x_j) \neq \max(0, \alpha(x_i)), \ \alpha(x_j) \geq 0}{\alpha := \text{update}(\alpha, x_i, \alpha(x_j) - \alpha(x_i))}
\]

\[
\text{Update}_a \quad \frac{x_j \notin \mathcal{B}, \langle x_i, x_j \rangle \in R, \ \alpha(x_j) \neq \max(0, \alpha(x_i))}{\alpha := \text{update}(\alpha, x_j, \max(0, \alpha(x_i)) - \alpha(x_j))}
\]

\[
\text{PivotForRelu} \quad \frac{x_i \in \mathcal{B}, \ \exists x_l. \langle x_i, x_l \rangle \in R \lor \langle x_l, x_i \rangle \in R, \ x_j \notin \mathcal{B}, \ T_{i,j} \neq 0}{T := \text{pivot}(T, i, j), \ \mathcal{B} := \mathcal{B} \cup \{x_j\} \setminus \{x_i\}}
\]

\[
\text{ReluSplit} \quad \frac{\langle x_i, x_j \rangle \in R, \ l(x_i) < 0, \ u(x_i) > 0}{u(x_i) := 0 \quad l(x_i) := 0}
\]

\[
\text{ReluSuccess} \quad \forall x \in \mathcal{X}. \ l(x) \leq \alpha(x) \leq u(x), \ \forall \langle x^w, x^a \rangle \in R. \ \alpha(x^a) = \max(0, \alpha(x^w)) \quad \text{SAT}
\]
Properties of Reluplex

Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

Soundness:
SAT \Rightarrow assignment is correct
UNSAT \Rightarrow no assignment exists

Completeness: depends on variable selection strategy and splitting strategy

Naive approach: split on all variables immediately, apply Bland's rule
This is the case-splitting approach from before
Ensures termination
Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete.*

Soundness: $\text{SAT} \rightarrow$ assignment is correct

UNSAT \rightarrow no assignment exists

Completeness: depends on variable selection strategy and splitting strategy

Naive approach: split on all variables immediately, apply Bland's rule

This is the case-splitting approach from before

Ensures termination
Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete

- Soundness:

- Completeness: depends on variable selection strategy and splitting strategy

Naive approach: split on all variables immediately, apply Bland's rule

This is the case-splitting approach from before

Ensures termination
Properties of Reluplex

Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

- **Soundness:**
 - SAT \(\Rightarrow \) assignment is correct

- Completeness: depends on variable selection strategy and splitting strategy

 - Naive approach: split on all variables immediately, apply Bland's rule
 - This is the case-splitting approach from before
 - Ensures termination
Properties of Reluplex

Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

- **Soundness:**
 - SAT \Rightarrow assignment is correct
 - UNSAT \Rightarrow no assignment exists

* depends on variable selection strategy and splitting strategy.

Naive approach: split on all variables immediately, apply Bland’s rule.
This is the case-splitting approach from before.
Ensures termination.
Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

- **Soundness:**
 - $\text{SAT} \Rightarrow$ assignment is correct
 - $\text{UNSAT} \Rightarrow$ no assignment exists

- **Completeness:** depends on variable selection strategy and splitting strategy
Properties of Reluplex

Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

- **Soundness:**
 - SAT ⇒ assignment is correct
 - UNSAT ⇒ no assignment exists

- **Completeness:** depends on *variable selection strategy* and *splitting strategy*

- Naive approach: split on all variables immediately, apply Bland’s rule
Properties of Reluplex

Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

- **Soundness:**
 - SAT \Rightarrow assignment is correct
 - UNSAT \Rightarrow no assignment exists

- **Completeness:** depends on *variable selection strategy* and *splitting strategy*

- Naive approach: split on all variables immediately, apply Bland’s rule
 - This is the case-splitting approach from before
Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete

- **Soundness:**
 - SAT \(\Rightarrow\) assignment is correct
 - UNSAT \(\Rightarrow\) no assignment exists

- **Completeness:** depends on *variable selection strategy* and *splitting strategy*

- Naive approach: split on all variables immediately, apply Bland’s rule
 - This is the case-splitting approach from before
 - Ensures termination
More Efficient Reluplex

Better approach:
lazy splitting

Start fixing bound violations

Once all variables within bounds, address broken ReLUs

If a ReLU is repeatedly broken, split on it

Otherwise, fix it without splitting

And repeat as needed

Usually end up splitting on a fraction of the ReLUs (20%)

Can reduce splitting further with some additional work
More Efficient Reluplex

- Better approach: *lazy splitting*
More Efficient Reluplex

Better approach: lazy splitting
- Start fixing bound violations

Once all variables within bounds, address broken ReLUs
- If a ReLU is repeatedly broken, split on it
- Otherwise, fix it without splitting

And repeat as needed

Usually end up splitting on a fraction of the ReLUs (20%)

Can reduce splitting further with some additional work
Better approach: *lazy splitting*

- Start fixing bound violations
- Once all variables within bounds, address broken ReLUs

Often end up splitting on a fraction of the ReLUs (20%)
Better approach: *lazy splitting*

- Start fixing bound violations
- Once all variables within bounds, address broken ReLUs
 - If a ReLU is repeatedly broken, split on it

Usually end up splitting on a fraction of the ReLUs (20%) can reduce splitting further with some additional work
More Efficient Reluplex

Better approach: *lazy splitting*

- Start fixing bound violations
- Once all variables within bounds, address broken ReLUs
 - If a ReLU is repeatedly broken, split on it
 - Otherwise, fix it without splitting

And repeat as needed

Usually end up splitting on a fraction of the ReLUs (~20%)

Can reduce splitting further with some additional work
Better approach: *lazy splitting*

- Start fixing bound violations
- Once all variables within bounds, address broken ReLUs
 - If a ReLU is repeatedly broken, split on it
 - Otherwise, fix it without splitting
- And repeat as needed

Usually end up splitting on a fraction of the ReLUs (~20%)
Can reduce splitting further with some additional work
Better approach: *lazy splitting*

- Start fixing bound violations
- Once all variables within bounds, address broken ReLUs
 - If a ReLU is repeatedly broken, split on it
 - Otherwise, fix it without splitting
- And repeat as needed

Usually end up splitting on a fraction of the ReLUs (20%)
Better approach: *lazy splitting*

- Start fixing bound violations
- Once all variables within bounds, address broken ReLUs
 - If a ReLU is repeatedly broken, split on it
 - Otherwise, fix it without splitting
- And repeat as needed

Usually end up splitting on a fraction of the ReLUs (20%)
More Efficient Reluplex: Bound Tightening

During execution we encounter many equations. Can use them for bound tightening. Example:

\[x = y + z \]
\[x \geq -2, \quad y \geq 1, \quad z \geq 1 \]

Can derive tighter bound:

\[x \geq 2 \]

If \(x \) is part of a ReLU pair, we say the ReLUs phase is fixed and we replace it by a linear equation. Same as in case splitting, only no back-tracking required.

Guy Katz (HUJI)
Verification of ML
UnRAVeL 2019
During execution we encounter many equations.
During execution we encounter many equations

Can use them for *bound tightening*
More Efficient Reluplex: Bound Tightening

- During execution we encounter many equations
- Can use them for bound tightening
- Example:

\[
x = y + z \quad x \geq -2, \quad y \geq 1, \quad z \geq 1
\]
During execution we encounter many equations

- Can use them for *bound tightening*

Example:

\[
x = y + z \quad x \geq -2, \quad y \geq 1, \quad z \geq 1
\]

- Can derive *tighter* bound: \(x \geq 2 \)
During execution we encounter many equations

Can use them for \textit{bound tightening}

Example:

\[
x = y + z \quad x \geq -2, \quad y \geq 1, \quad z \geq 1
\]

Can derive \textit{tighter} bound: \(x \geq 2 \)

If \(x \) is part of a ReLU pair, we say the ReLUs phase is \textit{fixed}
More Efficient Reluplex: Bound Tightening

- During execution we encounter many equations
 - Can use them for *bound tightening*

Example:

\[
x = y + z \quad x \geq -2, \quad y \geq 1, \quad z \geq 1
\]

- Can derive *tighter* bound: \(x \geq 2 \)

- If \(x \) is part of a ReLU pair, we say the ReLUs phase is *fixed*
 - And we replace it by a linear equation
During execution we encounter many equations

Can use them for *bound tightening*

Example:

\[x = y + z \quad x \geq -2, \quad y \geq 1, \quad z \geq 1 \]

Can derive *tighter* bound: \(x \geq 2 \)

If \(x \) is part of a ReLU pair, we say the ReLUs phase is *fixed*

- And we replace it by a linear equation
- Same as in case splitting, only no back-tracking required
In every pivot step we examine an equation
Use that equation for bound tightening
For the basic variable
For other variables, too?
Complexity: linear in the size of the equation
Particularly useful after splitting
Because new bounds have been introduced
Can be combined with
backjumping
In every pivot step we examine an equation.
In every pivot step we examine an equation

Use that equation for bound tightening
In every pivot step we examine an equation

Use that equation for bound tightening
 For the basic variable
In every pivot step we examine an equation

Use that equation for bound tightening
 - For the basic variable
 - For other variables, too?
In every pivot step we examine an equation

Use that equation for bound tightening
 - For the basic variable
 - For other variables, too?
 - Complexity: linear in the size of the equation
In every pivot step we examine an equation

Use that equation for bound tightening
 - For the basic variable
 - For other variables, too?
 - Complexity: linear in the size of the equation

Particularly useful after splitting
In every pivot step we examine an equation

Use that equation for bound tightening
 - For the basic variable
 - For other variables, too?
 - Complexity: linear in the size of the equation

Particularly useful after splitting
 - Because new bounds have been introduced
In every pivot step we examine an equation

Use that equation for bound tightening
- For the basic variable
- For other variables, too?
- Complexity: linear in the size of the equation

Particularly useful after splitting
- Because new bounds have been introduced

Can be combined with \textit{backjumping}
Non-Chronological Backtracking (Backjumping)

A useful technique in SAT and SMT solving

Backtracking: change last guess

Backjumping: change an earlier guess

Need to keep track of the discovery of new bounds
Non-Chronological Backtracking (Backjumping)

- A useful technique in SAT and SMT solving
Non-Chronological Backtracking (Backjumping)

- A useful technique in SAT and SMT solving
- Backtracking: change *last* guess
Non-Chronological Backtracking (Backjumping)

- A useful technique in SAT and SMT solving
- Backtracking: change *last* guess
- Backjumping: change an *earlier* guess
Non-Chronological Backtracking (Backjumping)

- A useful technique in SAT and SMT solving
- Backtracking: change *last* guess
- Backjumping: change an *earlier* guess
- Need to keep track of the discovery of new bounds
Non-Chronological Backtracking (Backjumping) (cnt’d)

\[y_1 = \text{ReLU}(x_1), \ y_2 = \text{ReLU}(x_2) \]

- \[y_1 = 0, \ x_1 \leq 0 \]
- \[y_1 = x_1, \ x_1 \geq 0 \]
- \[y_2 = 0, \ x_2 \leq 0 \]
- \[y_2 = x_2, \ x_2 \geq 0 \]
- \[y_2 = x_2, \ x_2 \geq 0 \]

UNSAT
Non-Chronological Backtracking (Backjumping) (cnt’d)

\[y_1 = \text{ReLU}(x_1), \ y_2 = \text{ReLU}(x_2) \]

\[y_1 = 0, \ x_1 \leq 0 \]

\[y_2 = 0, \ x_2 \leq 0 \]

\[y_1 = x_1, \ x_1 \geq 0 \]

\[y_2 = x_2, \ x_2 \geq 0 \]

\[y_2 = 0, \ x_2 \geq 0 \]

\[y_2 = x_2, \ x_2 \geq 0 \]

\[y_2 = x_2, \ x_2 \geq 0 \]
Precision and Numerical Stability

SMT solvers typically use precise arithmetic. This ensures soundness but is quite slow.

LP solvers typically use floating point arithmetic. Rounding errors can harm soundness but is much faster.

LP solvers attempt to avoid division by tiny fractions. Should do the same when implementing Reluplex.
SMT solvers typically use *precise arithmetic*
SMT solvers typically use *precise arithmetic*
- This ensures soundness
SMT solvers typically use *precise arithmetic*
- This ensures soundness
- But is quite slow
SMT solvers typically use \textit{precise arithmetic}.

- This ensures soundness.
- But is quite slow.

LP solvers typically use \textit{floating point arithmetic}.
SMT solvers typically use *precise arithmetic*
- This ensures soundness
- But is quite slow

LP solvers typically use *floating point arithmetic*
- Rounding errors can harm soundness
Precision and Numerical Stability

- SMT solvers typically use *precise arithmetic*
 - This ensures soundness
 - But is quite slow

- LP solvers typically use *floating point arithmetic*
 - Rounding errors can harm soundness
 - But is much faster
SMT solvers typically use *precise arithmetic*
- This ensures soundness
- But is quite slow

LP solvers typically use *floating point arithmetic*
- Rounding errors can harm soundness
- But is much faster

LP solvers attempt to avoid division by tiny fractions
SMT solvers typically use *precise arithmetic*
- This ensures soundness
- But is quite slow

LP solvers typically use *floating point arithmetic*
- Rounding errors can harm soundness
- But is much faster

LP solvers attempt to avoid division by tiny fractions

Should do the same when implementing Reluplex
Precision and Numerical Stability (cnt’d)

- Can monitor numerical instability
- Plug current assignment into input formulas
- Measure the error
- If the degradation exceeds a certain threshold, restore the equations from the original
- Fewer pivot operations, and hence more accuracy
- Still does not guarantee soundness
- Open question for most techniques
Can monitor numerical instability
Can monitor numerical instability
 Plug current assignment into input formulas
Can monitor numerical instability
- Plug current assignment into input formulas
- Measure the error

If the degradation exceeds a certain threshold, restore the equations from the original

Fewer pivot operations, and hence more accuracy

Still does not guarantee soundness

Open question for most techniques
Can monitor numerical instability
 - Plug current assignment into input formulas
 - Measure the error

If the degradation exceeds a certain threshold, restore the equations from the original
Can monitor numerical instability

 Plug current assignment into input formulas

 Measure the error

If the degradation exceeds a certain threshold, restore the equations from the original

 Fewer pivot operations, and hence more accuracy
Can monitor numerical instability
 - Plug current assignment into input formulas
 - Measure the error

If the degradation exceeds a certain threshold, restore the equations from the original
 - Fewer pivot operations, and hence more accuracy

Still does not guarantee soundness
Can monitor numerical instability
 - Plug current assignment into input formulas
 - Measure the error

If the degradation exceeds a certain threshold, restore the equations from the original
 - Fewer pivot operations, and hence more accuracy

Still *does not guarantee* soundness
 - Open question for most techniques
Roadmap

- The simplex algorithm, for solving linear programs
- Extension into Reluplex, for solving linear programs + ReLUs

Some highlights for an efficient implementation

Up next:
- We will talk about use-cases where Reluplex was applied
 1. ACAS Xu Verification
 2. Adversarial Robustness
 3. Reluplex + Clustering
Roadmap

- The *simplex* algorithm, for solving linear programs
Roadmap

- The *simplex* algorithm, for solving linear programs
- Extension into *Reluplex*, for solving linear programs + ReLUs
Roadmap

- The *simplex* algorithm, for solving linear programs
- Extension into *Reluplex*, for solving linear programs + ReLUs
- Some highlights for an efficient implementation

Up next:
1. ACAS Xu Verification
2. Adversarial Robustness
3. Reluplex + Clustering
Roadmap

- The *simplex* algorithm, for solving linear programs
- Extension into *Reluplex*, for solving linear programs $+ \text{ ReLUs}$
- Some highlights for an efficient implementation
- Up next:
Roadmap

- The *simplex* algorithm, for solving linear programs
- Extension into *Reluplex*, for solving linear programs + ReLUs
- Some highlights for an efficient implementation

Up next:

- We will talk about use-cases where Reluplex was applied
Roadmap

- The *simplex* algorithm, for solving linear programs
- Extension into *Reluplex*, for solving linear programs + ReLUs
- Some highlights for an efficient implementation

Up next:
- We will talk about use-cases where Reluplex was applied
 - ACAS Xu Verification
Roadmap

- The *simplex* algorithm, for solving linear programs
- Extension into *Reluplex*, for solving linear programs + ReLUs
- Some highlights for an efficient implementation

Up next:

- We will talk about use-cases where Reluplex was applied
 1. ACAS Xu Verification
 2. Adversarial Robustness
Roadmap

- The *simplex* algorithm, for solving linear programs
- Extension into *Reluplex*, for solving linear programs + ReLUs
- Some highlights for an efficient implementation

Up next:

- We will talk about use-cases where Reluplex was applied
 1. ACAS Xu Verification
 2. Adversarial Robustness
 3. Reluplex + Clustering
The ACAS Xu System

An Airborne Collision-Avoidance System, for drones
Being developed by the US Federal Aviation Administration (FAA)

Produce an advisory:

- Clear-of-conflict (COC)
- Strong left
- Weak left
- Strong right
- Weak right

Ownship

Intruder

ρ

ψ

θ

Implemented using neural networks

Guy Katz (HUJI)

Verification of ML

UnRAVeL 2019
The ACAS Xu System

- An *Airborne Collision-Avoidance System*, for drones
The ACAS Xu System

- An *Airborne Collision-Avoidance System*, for drones
- Being developed by the US Federal Aviation Administration (FAA)
The ACAS Xu System

- An *Airborne Collision-Avoidance System*, for drones
- Being developed by the US Federal Aviation Administration (FAA)
- Produce an advisory:
 - Clear-of-conflict (COC)
 - Strong left
 - Weak left
 - Strong right
 - Weak right
The ACAS Xu System

- An *Airborne Collision-Avoidance System*, for drones
- Being developed by the US Federal Aviation Administration (FAA)
- Produce an advisory:
 - *Clear-of-conflict (COC)*
 - *Strong left*
 - *Weak left*
 - *Strong right*
 - *Weak right*
- Implemented using neural networks
There are properties that the FAA cares about:

1. Consistent alerting regions
2. No unnecessary turning advisories
3. Strong alerts do not occur when intruder vertically distant

These properties are defined formally.

Constraints on inputs and outputs.
There are properties that the FAA cares about
There are properties that the FAA cares about
- Consistent alerting regions
Certifying ACAS Xu

- There are properties that the FAA cares about
 - Consistent alerting regions
 - No unnecessary turning advisories
Certifying ACAS Xu

- There are properties that the FAA cares about
 - Consistent alerting regions
 - No unnecessary turning advisories
 - Strong alerts do not occur when intruder vertically distant
Certifying ACAS Xu

- There are properties that the FAA cares about
 - Consistent alerting regions
 - No unnecessary turning advisories
 - Strong alerts do not occur when intruder vertically distant

- Properties defined formally
Certifying ACAS Xu

- There are properties that the FAA cares about
 - Consistent alerting regions
 - No unnecessary turning advisories
 - Strong alerts do not occur when intruder vertically distant

- Properties defined formally
 - Constraints on inputs and outputs
We worked on a list of 10 properties

Example 1:
If the intruder is near and approaching from the left, the network advises strong right

Distance:
\[12000 \leq \rho \leq 62000 \]

Angle to intruder:
\[0.2 \leq \theta \leq 0.4 \]

Etc.

Proved in less than 1.5 hours, using 4 machines
We worked on a list of 10 properties
We worked on a list of 10 properties

Example 1:

- If the intruder is near and approaching from the left, the network advises strong right.
- Distance: $12000 \leq \rho \leq 62000$
- Angle to intruder: $0.2 \leq \theta \leq 0.4$
- Etc.

Proved in less than 1.5 hours, using 4 machines.
We worked on a list of 10 properties

Example 1:

If the intruder is near and approaching from the left, the network advises strong right
We worked on a list of 10 properties

Example 1:
- If the intruder is near and approaching from the left, the network advises strong right
 - Distance: $12000 \leq \rho \leq 62000$
We worked on a list of 10 properties

Example 1:
- If the intruder is near and approaching from the left, the network advises strong right
 - Distance: $12000 \leq \rho \leq 62000$
 - Angle to intruder: $0.2 \leq \theta \leq 0.4$
We worked on a list of 10 properties

Example 1:
- If the intruder is near and approaching from the left, the network advises strong right
 - Distance: $12000 \leq \rho \leq 62000$
 - Angle to intruder: $0.2 \leq \theta \leq 0.4$
 - Etc.
We worked on a list of 10 properties

Example 1:
- If the intruder is near and approaching from the left, the network advises strong right
 - Distance: $12000 \leq \rho \leq 62000$
 - Angle to intruder: $0.2 \leq \theta \leq 0.4$
- Etc.

- Proved in less than 1.5 hours, using 4 machines
Example 2:
If vertical separation is large and the previous advisory is weak left, the network advises clear-of-conflict or weak left.

Distance: \[0 \leq \rho \leq 60\]

Time to loss of vertical separation: \[\tau = 100\]

Etc.

Found a counter-example in 11 hours.

Guy Katz (HUJI)
Example 2:

If vertical separation is large and the previous advisory is weak left, the network advises clear-of-conflict or weak left.

Distance: $0 \leq \rho \leq 60$

Time to loss of vertical separation: $\tau = 100$

Etc.

Found a counter-example in 11 hours.
Example 2:
- If vertical separation is large and the previous advisory is weak left, the network advises clear-of-conflict or weak left.
Example 2:
- If vertical separation is large and the previous advisory is weak left, the network advises clear-of-conflict or weak left
- Distance: $0 \leq \rho \leq 60760$
Certifying ACAS Xu (cnt’d)

Example 2:
- If vertical separation is large and the previous advisory is weak left, the network advises clear-of-conflict or weak left
 - Distance: $0 \leq \rho \leq 60760$
 - Time to loss of vertical separation: $\tau = 100$
Example 2:
- If vertical separation is large and the previous advisory is weak left, the network advises clear-of-conflict or weak left
 - Distance: $0 \leq \rho \leq 60760$
 - Time to loss of vertical separation: $\tau = 100$
 - Etc.
Example 2:
- If vertical separation is large and the previous advisory is weak left, the network advises clear-of-conflict or weak left
 - Distance: $0 \leq \rho \leq 60760$
 - Time to loss of vertical separation: $\tau = 100$
 - Etc.
- Found a counter-example in 11 hours
Certifying ACAS Xu (cnt’d)
<table>
<thead>
<tr>
<th></th>
<th>Networks</th>
<th>Result</th>
<th>Time</th>
<th>Stack</th>
<th>Splits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_1</td>
<td>41</td>
<td>UNSAT</td>
<td>394517</td>
<td>47</td>
<td>1522384</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>TIMEOUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_2</td>
<td>1</td>
<td>UNSAT</td>
<td>463</td>
<td>55</td>
<td>88388</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>SAT</td>
<td>82419</td>
<td>44</td>
<td>284515</td>
</tr>
<tr>
<td>ϕ_3</td>
<td>42</td>
<td>UNSAT</td>
<td>28156</td>
<td>22</td>
<td>52080</td>
</tr>
<tr>
<td>ϕ_4</td>
<td>42</td>
<td>UNSAT</td>
<td>12475</td>
<td>21</td>
<td>23940</td>
</tr>
<tr>
<td>ϕ_5</td>
<td>1</td>
<td>UNSAT</td>
<td>19355</td>
<td>46</td>
<td>58914</td>
</tr>
<tr>
<td>ϕ_6</td>
<td>1</td>
<td>UNSAT</td>
<td>180288</td>
<td>50</td>
<td>548496</td>
</tr>
<tr>
<td>ϕ_7</td>
<td>1</td>
<td>TIMEOUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_8</td>
<td>1</td>
<td>SAT</td>
<td>40102</td>
<td>69</td>
<td>116697</td>
</tr>
<tr>
<td>ϕ_9</td>
<td>1</td>
<td>UNSAT</td>
<td>99634</td>
<td>48</td>
<td>227002</td>
</tr>
<tr>
<td>ϕ_{10}</td>
<td>1</td>
<td>UNSAT</td>
<td>19944</td>
<td>49</td>
<td>88520</td>
</tr>
</tbody>
</table>
Adversarial Robustness

Slight perturbations of inputs lead to misclassification. Verification can prove that this cannot occur, allowing us to assess attacks and defenses.

Guy Katz (HUJI)
Adversarial Robustness

Slight perturbations of inputs lead to misclassification. Verification can prove that this cannot occur, allowing us to assess attacks and defenses.

Goodfellow et al., 2015

“panda”
57.7% confidence

+ $\epsilon \times$

“gibbon”
99.3% confidence
Adversarial Robustness

Slight perturbations of inputs lead to misclassification

Goodfellow et al., 2015

“panda” 57.7% confidence

+ \epsilon \times

“gibbon” 99.3% confidence
Adversarial Robustness

Slight perturbations of inputs lead to misclassification

Verification can prove that this cannot occur

Goodfellow et al., 2015
Adversarial Robustness

- Slight perturbations of inputs lead to misclassification
- Verification can prove that this cannot occur
- Allows us to assess attacks defenses

Goodfellow et al., 2015

“panda” 57.7% confidence

+ \epsilon \times

“gibbon” 99.3% confidence
Local Adversarial Robustness

Verification question: for a given panda \bar{x} and a given amount of noise δ, does classification remain the same?

If $\|\bar{x} - \bar{x}_0\|_{L} \leq \delta$ then $\bigwedge_i (\bar{y}_i[0] \geq \bar{y}_i)$, where $\bar{y}_i[0]$ is the desired label.

Easiest norm to handle: L_∞, the infinity norm

$\|\bar{x} - \bar{x}_0\|_{L_\infty} \leq \delta \iff \forall i. -\delta \leq \bar{x}_i[i] - \bar{x}_0[i] \leq \delta$

Can also handle L_1: $\|\bar{x} - \bar{x}_0\|_{L_1} \leq \delta \iff \sum_{n=1}^{\infty} |\bar{x}_i[i] - \bar{x}_0[i]| \leq \delta$

And we know that $\max(a, b) = \text{ReLU}(a - b) + b$
Verification question: for a given panda \bar{x}_0 and a given amount of noise δ, does classification remain the same?

If $\|\bar{x} - \bar{x}_0\|_{L} \leq \delta$ then $\bigwedge_i (\bar{y}_i[0] \geq \bar{y}_i)$, where $\bar{y}_i[0]$ is the desired label.

Easiest norm to handle: L_∞, the infinity norm $\|\bar{x} - \bar{x}_0\|_{L_\infty} \leq \delta \iff \forall i. -\delta \leq \bar{x}_i[0] - \bar{x}_0[i] \leq \delta$.

Can also handle L_1: $\|\bar{x} - \bar{x}_0\|_{L_1} \leq \delta \iff \sum_{n=1}^{\mathbf{i}} |\bar{x}_i[0] - \bar{x}_0[i]| \leq \delta |\bar{x}_i[0] - \bar{x}_0[i]| = \max(\bar{x}_i[0] - \bar{x}_0[i], \bar{x}_0[i] - \bar{x}_0[i])$.
Verification question: for a given panda \bar{x}_0 and a given amount of noise δ, does classification remain the same?

- If $\|\bar{x} - \bar{x}_0\|_L \leq \delta$ then $\bigwedge_i (\bar{y}[i_0] \geq \bar{y}[i])$, where $\bar{y}[i_0]$ is the desired label.
Verification question: for a given panda \(\bar{x}_0 \) and a given amount of noise \(\delta \), does classification remain the same?

- If \(\| \bar{x} - \bar{x}_0 \|_L \leq \delta \) then \(\land_i(\bar{y}[i_0] \geq \bar{y}[i]) \), where \(\bar{y}[i_0] \) is the desired label.

Easiest norm to handle: \(L_\infty \), the infinity norm.
Local Adversarial Robustness

- Verification question: for a given panda \bar{x}_0 and a given amount of noise δ, does classification remain the same?
 - If $\|\bar{x} - \bar{x}_0\|_L \leq \delta$ then $\bigwedge_i (\bar{y}[i_0] \geq \bar{y}[i])$, where $\bar{y}[i_0]$ is the desired label.

- Easiest norm to handle: L_∞, the infinity norm
 - $\|\bar{x} - \bar{x}_0\|_{L_\infty} \leq \delta \iff \forall i. -\delta \leq \bar{x}[i] - \bar{x}_0[i] \leq \delta$
Local Adversarial Robustness

Verification question: for a given panda \bar{x}_0 and a given amount of noise δ, does classification remain the same?

- If $\|\bar{x} - \bar{x}_0\|_L \leq \delta$ then $\bigwedge_i (\bar{y}[i_0] \geq \bar{y}[i])$, where $\bar{y}[i_0]$ is the desired label

Easiest norm to handle: L_∞, the infinity norm

- $\|\bar{x} - \bar{x}_0\|_{L_\infty} \leq \delta \iff \forall i. -\delta \leq \bar{x}[i] - \bar{x}_0[i] \leq \delta$

Can also handle L_1:
Local Adversarial Robustness

Verification question: for a given panda \bar{x}_0 and a given amount of noise δ, does classification remain the same?

If $\|\bar{x} - \bar{x}_0\|_L \leq \delta$ then $\bigwedge_i (\bar{y}[i_0] \geq \bar{y}[i])$, where $\bar{y}[i_0]$ is the desired label.

Easiest norm to handle: L_∞, the infinity norm

$\|\bar{x} - \bar{x}_0\|_{L_\infty} \leq \delta \iff \forall i. -\delta \leq \bar{x}[i] - \bar{x}_0[i] \leq \delta$

Can also handle L_1:

$\|\bar{x} - \bar{x}_0\|_{L_1} \leq \delta \iff \sum_{i=1}^{n} |\bar{x}[i] - \bar{x}_0[i]| \leq \delta$
Verification question: for a given panda \bar{x}_0 and a given amount of noise δ, does classification remain the same?

- If $\|\bar{x} - \bar{x}_0\|_L \leq \delta$ then $\bigwedge_i (\bar{y}[i_0] \geq \bar{y}[i])$, where $\bar{y}[i_0]$ is the desired label

Easiest norm to handle: L_∞, the infinity norm

- $\|\bar{x} - \bar{x}_0\|_{L_\infty} \leq \delta \iff \forall i. \ -\delta \leq \bar{x}[i] - \bar{x}_0[i] \leq \delta$

Can also handle L_1:

- $\|\bar{x} - \bar{x}_0\|_{L_1} \leq \delta \iff \sum_{i=1}^{n} |\bar{x}[i] - \bar{x}_0[i]| \leq \delta$
- $|\bar{x}[i] - \bar{x}_0[i]| = \max(\bar{x}[i] - \bar{x}_0[i], \bar{x}[i] - \bar{x}_0[i])$
Verification question: for a given panda \bar{x}_0 and a given amount of noise δ, does classification remain the same?

- If $\|\bar{x} - \bar{x}_0\|_L \leq \delta$ then $\bigwedge_i (\bar{y}[i_0] \geq \bar{y}[i])$, where $\bar{y}[i_0]$ is the desired label

Easiest norm to handle: L_∞, the infinity norm

- $\|\bar{x} - \bar{x}_0\|_{L_\infty} \leq \delta \iff \forall i. -\delta \leq \bar{x}[i] - \bar{x}_0[i] \leq \delta$

Can also handle L_1:

- $\|\bar{x} - \bar{x}_0\|_{L_1} \leq \delta \iff \sum_{i=1}^{n} |\bar{x}[i] - \bar{x}_0[i]| \leq \delta$
- $|\bar{x}[i] - \bar{x}_0[i]| = \max(\bar{x}[i] - \bar{x}_0[i], \bar{x}_0[i] - \bar{x}[i])$
- And we know that $\max(a, b) = \text{ReLU}(a - b) + b$
Local Adversarial Robustness (cnt’d)

Can find the optimal δ for which robustness holds

Using binary search

Example: an ACAS Xu network

<table>
<thead>
<tr>
<th>δ</th>
<th>Result</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025</td>
<td>UNSAT</td>
<td>5</td>
</tr>
<tr>
<td>0.05</td>
<td>UNSAT</td>
<td>57</td>
</tr>
<tr>
<td>0.075</td>
<td>SAT</td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>SAT</td>
<td>135</td>
</tr>
</tbody>
</table>

Guy Katz (HUJI)
Verification of ML
UnRAVeL 2019 103 / 116
Can find the \textit{optimal} δ for which robustness holds
Local Adversarial Robustness (cnt’d)

- Can find the *optimal* δ for which robustness holds
 - Using binary search
Can find the *optimal* δ for which robustness holds
- Using binary search

Example: an ACAS Xu network
Local Adversarial Robustness (cnt’d)

- Can find the \textit{optimal} δ for which robustness holds
 - Using binary search

- Example: an ACAS Xu network

<table>
<thead>
<tr>
<th></th>
<th>$\delta = 0.1$</th>
<th>$\delta = 0.075$</th>
<th>$\delta = 0.05$</th>
<th>$\delta = 0.025$</th>
<th>$\delta = 0.01$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Result Time</td>
<td>Result Time</td>
<td>Result Time</td>
<td>Result Time</td>
<td>Result Time</td>
</tr>
<tr>
<td>Point 1</td>
<td>SAT 135</td>
<td>SAT 239</td>
<td>SAT 24</td>
<td>UNSAT 609</td>
<td>UNSAT 57</td>
</tr>
<tr>
<td>Point 2</td>
<td>UNSAT 5880</td>
<td>UNSAT 1167</td>
<td>UNSAT 285</td>
<td>UNSAT 57</td>
<td>UNSAT 5</td>
</tr>
<tr>
<td>Point 3</td>
<td>UNSAT 863</td>
<td>UNSAT 436</td>
<td>UNSAT 99</td>
<td>UNSAT 53</td>
<td>UNSAT 1</td>
</tr>
<tr>
<td>Point 4</td>
<td>SAT 2</td>
<td>SAT 977</td>
<td>SAT 1168</td>
<td>UNSAT 656</td>
<td>UNSAT 7</td>
</tr>
<tr>
<td>Point 5</td>
<td>UNSAT 14560</td>
<td>UNSAT 4344</td>
<td>UNSAT 1331</td>
<td>UNSAT 221</td>
<td>UNSAT 6</td>
</tr>
</tbody>
</table>
Assessing Attacks and Defenses [CKBD18]

Assessing attacks:

Pick point \bar{x}

Use verification to find optimal δ

Use attack to find δ'

See how close δ' is to δ

Example: Carlini-Wagner attack [CW17] on a small MNIST network

On average, δ is about 6% smaller than δ'
Assessing attacks:

- Use verification to find optimal δ
- Use attack to find δ'
- See how close δ' is to δ

Example: Carlini-Wagner attack [CW17] on a small MNIST network

On average, δ about 6% smaller than δ'
Assessing attacks:

- Pick point \bar{x}
Assessing attacks:

- Pick point \bar{x}
- Use *verification* to find optimal δ
Assessing attacks:

- Pick point \bar{x}
- Use *verification* to find optimal δ
- Use *attack* to find δ'

Example: Carlini-Wagner attack [CW17] on a small MNIST network

On average, δ about 6% smaller than δ'
Assessing attacks:

- Pick point \bar{x}
- Use *verification* to find optimal δ
- Use *attack* to find δ'
- See how close δ' is to δ

Example: Carlini-Wagner attack [CW17] on a small MNIST network

On average, δ about 6% smaller than δ'
Assessing attacks:

- Pick point \bar{x}
- Use *verification* to find optimal δ
- Use *attack* to find δ'
- See how close δ' is to δ

Example: Carlini-Wagner attack [CW17] on a small MNIST network
Assessing Attacks and Defenses [CKBD18]

Assessing attacks:
 - Pick point \bar{x}
 - Use *verification* to find optimal δ
 - Use *attack* to find δ'
 - See how close δ' is to δ

Example: Carlini-Wagner attack [CW17] on a small MNIST network

On average, δ about 6% smaller than δ'
Assessing defenses:
Start with network N
Train hardened network \(\bar{N} \)
Pick point \(\bar{x} \)
Compare optimal \(\delta \) before and after hardening

Example: Madry defense [MMS+18] on a small MNIST network
On average, hardened \(\delta \) about 423% larger
However, smaller in some cases
Assessing defenses:

Start with network N

Train hardened network \overline{N}

Pick point \overline{x}

Compare optimal δ before and after hardening

Example: Madry defense [MMS +18] on a small MNIST network

On average, hardened δ is about 423% larger

However, smaller in some cases
Assessing defenses:
- Start with network N

Example: Madry defense [MMS+18] on a small MNIST network

On average, hardened δ about 42% larger
However, smaller in some cases
Assessing defenses:
- Start with network N
- Train *hardened* network \bar{N}
Assessing defenses:

- Start with network N
- Train \textit{hardened} network \tilde{N}
- Pick point \bar{x}
Assessing defenses:

- Start with network N
- Train hardened network \tilde{N}
- Pick point \tilde{x}
- Compare optimal δ before and after hardening
Assessing defenses:
- Start with network N
- Train hardened network \bar{N}
- Pick point \bar{x}
- Compare optimal δ before and after hardening

Example: Madry defense $[\text{MMS}^+18]$ on a small MNIST network
Assessing defenses:

- Start with network N
- Train *hardened* network \overline{N}
- Pick point \tilde{x}
- Compare optimal δ *before* and *after* hardening

Example: Madry defense [MMS$^+$18] on a small MNIST network

On average, hardened δ about 423% larger
Assessing defenses:

- Start with network N
- Train *hardened* network \tilde{N}
- Pick point \bar{x}
- Compare optimal δ *before* and *after* hardening

Example: Madry defense [MMS$^+$18] on a small MNIST network

- On average, hardened δ about 423% larger
- However, smaller in some cases
Global Robustness?

Previous definition: for a particular input \bar{x}_0.

What's an acceptable δ? How do you pick \bar{x}_0?

Can you evaluate the overall robustness?
Global Robustness?

- Previous definition: for a particular input \bar{x}_0
Global Robustness?

- Previous definition: for a particular input \bar{x}_0
 - What’s an acceptable δ?
Global Robustness?

- Previous definition: for a particular input \bar{x}_0
- What’s an acceptable δ?
- How do you pick \bar{x}_0?
Global Robustness?

- Previous definition: for a particular input \bar{x}_0
 - What’s an acceptable δ?
 - How do you pick \bar{x}_0?
 - Can you evaluate the overall robustness?
Global Robustness?

- Previous definition: for a particular input \bar{x}_0
 - What’s an acceptable δ?
 - How do you pick \bar{x}_0?
 - Can you evaluate the overall robustness?
Global Robustness Queries

Let p_1, p_2 be confidence levels for certain label:

$$\forall \bar{x}_1, \bar{x}_2. \|\bar{x}_1 - \bar{x}_2\| \leq \delta \Rightarrow |p_1 - p_2| \leq \epsilon$$

Small changes to input do not change output by much

Significantly slower to compute

Double the network size

Large input regions

And also still need to choose δ, ϵ

A compromise: a clustering based approach
Global Robustness Queries

- Region boundaries: look at *confidence* instead of label
Global Robustness Queries

- Region boundaries: look at confidence instead of label
- Let p_1, p_2 be confidence levels for certain label:

$$\forall \bar{x}_1, \bar{x}_2. \quad \| \bar{x}_1 - \bar{x}_2 \| \leq \delta \Rightarrow |p_1 - p_2| \leq \epsilon$$
Global Robustness Queries

- Region boundaries: look at \textit{confidence} instead of label
- Let \(p_1, p_2 \) be confidence levels for certain label:

\[
\forall \bar{x}_1, \bar{x}_2. \quad \|\bar{x}_1 - \bar{x}_2\| \leq \delta \Rightarrow |p_1 - p_2| \leq \epsilon
\]

- Small changes to input do not change output by much
Global Robustness Queries

- Region boundaries: look at *confidence* instead of label
- Let p_1, p_2 be confidence levels for certain label:

$$\forall \bar{x}_1, \bar{x}_2. \quad \|\bar{x}_1 - \bar{x}_2\| \leq \delta \Rightarrow |p_1 - p_2| \leq \epsilon$$

- Small changes to input do not change output by much
- *Significantly* slower to compute
Global Robustness Queries

- Region boundaries: look at confidence instead of label

- Let p_1, p_2 be confidence levels for certain label:

\[\forall \bar{x}_1, \bar{x}_2. \quad \| \bar{x}_1 - \bar{x}_2 \| \leq \delta \Rightarrow |p_1 - p_2| \leq \epsilon \]

- Small changes to input do not change output by much

- **Significantly** slower to compute
 - Double the network size
Global Robustness Queries

- Region boundaries: look at \textit{confidence} instead of label

- Let p_1, p_2 be confidence levels for certain label:

 $$\forall \bar{x}_1, \bar{x}_2. \quad \|\bar{x}_1 - \bar{x}_2\| \leq \delta \Rightarrow |p_1 - p_2| \leq \epsilon$$

- Small changes to input do not change output by much

- \textbf{Significantly} slower to compute
 - Double the network size
 - Large input regions
Global Robustness Queries

- Region boundaries: look at *confidence* instead of label

- Let \(p_1, p_2 \) be confidence levels for certain label:

 \[
 \forall \bar{x}_1, \bar{x}_2. \quad \|\bar{x}_1 - \bar{x}_2\| \leq \delta \Rightarrow |p_1 - p_2| \leq \epsilon
 \]

- Small changes to input do not change output by much

- **Significantly** slower to compute
 - Double the network size
 - Large input regions

- And also still need to choose \(\delta, \epsilon \)
Global Robustness Queries

- Region boundaries: look at confidence instead of label

- Let p_1, p_2 be confidence levels for certain label:

 $$\forall \bar{x}_1, \bar{x}_2. \quad \|\bar{x}_1 - \bar{x}_2\| \leq \delta \Rightarrow |p_1 - p_2| \leq \epsilon$$

- Small changes to input do not change output by much

- **Significantly** slower to compute
 - Double the network size
 - Large input regions

- And also still need to choose δ, ϵ

- A compromise: a *clustering* based approach
DeepSafe: A Clustering-Based Approach [GKPB18]

Use clustering to identify regions on which the network should be consistent.

Clustering applied to known points (e.g., training set).

Identify centroid \bar{x}_0 and radius δ for each cluster.

Higher degree of automation.

Discovered an adversarial example in ACAS Xu.
Use *clustering* to identify regions on which the network should be consistent.
Use *clustering* to identify regions on which the network should be consistent

- Clustering applied to known points (e.g., training set)
Use *clustering* to identify regions on which the network should be consistent

- Clustering applied to known points (e.g., training set)
- Identify centroid \bar{x}_0 and radius δ for each cluster
Use *clustering* to identify regions on which the network should be consistent

- Clustering applied to known points (e.g., training set)
- Identify centroid \bar{x}_0 and radius δ for each cluster
Use *clustering* to identify regions on which the network should be consistent

- Clustering applied to known points (e.g., training set)
- Identify centroid \bar{x}_0 and radius δ for each cluster

Higher degree of automation
DeepSafe: A Clustering-Based Approach [GKPB18]

- Use *clustering* to identify regions on which the network should be consistent
 - Clustering applied to known points (e.g., training set)
 - Identify centroid \bar{x}_0 and radius δ for each cluster

- Higher degree of automation
- Discovered an adversarial example in ACAS Xu
Table of Contents

1. Introduction
2. Neural Networks
3. The Neural Network Verification Problem
4. State-of-the-Art Verification Techniques
5. Reluplex
6. Summary
Summary

Software generated by machine learning is becoming widespread. Certifying this software is a new and exciting challenge. Verification can play a key role.

The main questions:

- How do we verify?
- What do we verify?
Software generated by machine learning is becoming widespread.
Software generated by machine learning is becoming *widespread*

Certiﬁying this software is a new and exciting challenge
Software generated by machine learning is becoming widespread. Certifying this software is a new and exciting challenge. Verification can play a key role.
Software generated by machine learning is becoming widespread. Certifying this software is a new and exciting challenge. Verification can play a key role. The main questions:
Software generated by machine learning is becoming *widespread*

Certifying this software is a new and exciting challenge

Verification can play a key role

The main questions:

- *How* do we verify?
Software generated by machine learning is becoming widespread. Certifying this software is a new and exciting challenge. Verification can play a key role.

The main questions:

- \textit{How} do we verify?
- \textit{What} do we verify?
Summary - Approaches to Verification

The sound and complete approaches

An NP-complete problem

Usually based on the case splitting approach

Can be improved with:

- Tighter bound derivation
- Splitting heuristics
- Local optimization steps
The *sound and complete* approaches
Summary - Approaches to Verification

- The *sound and complete* approaches
 - An NP-complete problem
The *sound and complete* approaches

- An NP-complete problem
- Usually based on the *case splitting* approach
The *sound and complete* approaches

- An NP-complete problem
- Usually based on the *case splitting* approach
- Can be improved with:
 - Tighter bound derivation
 - Splitting heuristics
 - Local optimization steps
The *sound and complete* approaches

- An NP-complete problem
- Usually based on the *case splitting* approach
- Can be improved with:
 - Tighter bound derivation
The **sound and complete** approaches

- An NP-complete problem
- Usually based on the *case splitting* approach
- Can be improved with:
 - Tighter bound derivation
 - Splitting heuristics
The sound and complete approaches

- An NP-complete problem
- Usually based on the case splitting approach
- Can be improved with:
 - Tighter bound derivation
 - Splitting heuristics
 - Local optimization steps
Summary - Approaches to Verification (cnt’d)

Trading completeness for scalability

Discretization and exhaustive search techniques

Correct-by-construction networks

Abstraction techniques

Approximating the network

Approximating the input property
Trading *completeness* for *scalability*
Trading **completeness** for **scalability**

- Discretization and exhaustive search techniques
Trading *completeness* for *scalability*

- Discretization and exhaustive search techniques
- Correct-by-construction networks
Summary - Approaches to Verification (cnt’d)

- Trading *completeness* for *scalability*
 - Discretization and exhaustive search techniques
 - Correct-by-construction networks

- Abstraction techniques
Summary - Approaches to Verification (cnt’d)

- Trading *completeness* for *scalability*
 - Discretization and exhaustive search techniques
 - Correct-by-construction networks
- Abstraction techniques
 - Approximating the *network*
Trading \textit{completeness} for \textit{scalability}
- Discretization and exhaustive search techniques
- Correct-by-construction networks

Abstraction techniques
- Approximating the \textit{network}
- Approximating the \textit{input property}
Properties to Verify

Domain-specific properties
Example: ACAS Xu
Human input required — a known issue in verification

General properties
Adversarial robustness
Always desirable, regardless of networks
Can we find other such properties?
Properties to Verify

- *Domain-specific* properties
Properties to Verify

- *Domain-specific* properties
 - Example: ACAS Xu
Properties to Verify

- **Domain-specific** properties
 - Example: ACAS Xu
 - Human input required — a known issue in verification
Properties to Verify

- **Domain-specific** properties
 - Example: ACAS Xu
 - Human input required — a known issue in verification

- **General properties**
Properties to Verify

- **Domain-specific** properties
 - Example: ACAS Xu
 - Human input required — a known issue in verification

- **General properties**
 - Adversarial robustness
Properties to Verify

- **Domain-specific** properties
 - Example: ACAS Xu
 - Human input required — a known issue in verification

- **General properties**
 - Adversarial robustness
 - Always desirable, regardless of networks
Properties to Verify

Domain-specific properties
- Example: ACAS Xu
- Human input required — a known issue in verification

General properties
- Adversarial robustness
- Always desirable, regardless of networks
- Can we find other such properties?
Ongoing Work in the Reluplex Project

Improving scalability

Currently: linear and non-linear steps roughly independent

Can we solve both kinds of constraints together?

Better SMT techniques?

Proof certificates

Numerical stability is an issue

SAT answers can be checked, but what about UNSAT?

Replay the solution, using precise arithmetic

Generate an externally-checkable proof certificate
Ongoing Work in the Reluplex Project

- Improving *scalability*
Ongoing Work in the Reluplex Project

- Improving *scalability*
 - Currently: linear and non-linear steps roughly independent
Ongoing Work in the Reluplex Project

- Improving *scalability*
 - Currently: linear and non-linear steps roughly independent
 - Can we solve both kinds of constraints *together*?
Ongoing Work in the Reluplex Project

- Improving *scalability*
 - Currently: linear and non-linear steps roughly independent
 - Can we solve both kinds of constraints *together*?
 - Better *SMT techniques*?
Ongoing Work in the Reluplex Project

- Improving *scalability*
 - Currently: linear and non-linear steps roughly independent
 - Can we solve both kinds of constraints *together*?
 - Better *SMT techniques*?

- Proof certificates
Ongoing Work in the Reluplex Project

- Improving *scalability*
 - Currently: linear and non-linear steps roughly independent
 - Can we solve both kinds of constraints *together*?
 - Better *SMT techniques*?

- *Proof certificates*
 - Numerical stability is an issue
Ongoing Work in the Reluplex Project

- Improving *scalability*
 - Currently: linear and non-linear steps roughly independent
 - Can we solve both kinds of constraints *together*?
 - Better *SMT techniques*?

- *Proof certificates*
 - Numerical stability is an issue
 - SAT answers can be checked, but what about UNSAT?
Ongoing Work in the Reluplex Project

- Improving *scalability*
 - Currently: linear and non-linear steps roughly independent
 - Can we solve both kinds of constraints *together*?
 - Better *SMT techniques*?

- *Proof certificates*
 - Numerical stability is an issue
 - SAT answers can be checked, but what about UNSAT?
 - *Replay* the solution, using *precise arithmetic*
Ongoing Work in the Reluplex Project

- Improving *scalability*
 - Currently: linear and non-linear steps roughly independent
 - Can we solve both kinds of constraints together?
 - Better *SMT techniques*?

- *Proof certificates*
 - Numerical stability is an issue
 - SAT answers can be checked, but what about UNSAT?
 - *Replay* the solution, using *precise arithmetic*
 - Generate an *externally-checkable* proof certificate
Ongoing Work in the Reluplex Project (cnt’d)

More expressiveness
Handle non piece-wise linear activation functions?

Case studies
More extensive verification of ACAS Xu

Systems in which the network is just a component?

Collaboration with various industrial partners

Guy Katz (HUJI)
Ongoing Work in the Reluplex Project (cnt’d)

- More *expressiveness*
More expressiveness

- Handle non piece-wise linear activation functions?
More expressiveness
 - Handle non piece-wise linear activation functions?

Case studies
Ongoing Work in the Reluplex Project (cnt’d)

- More expressiveness
 - Handle non piece-wise linear activation functions?
- Case studies
 - More extensive verification of ACAS Xu
Ongoing Work in the Reluplex Project (cnt’d)

- More *expressiveness*
 - Handle *non piece-wise linear* activation functions?

- *Case studies*
 - More extensive verification of *ACAS Xu*
 - Systems in which the network is just a component?
Ongoing Work in the Reluplex Project (cnt’d)

- More *expressiveness*
 - Handle *non piece-wise linear* activation functions?

- *Case studies*
 - More extensive verification of *ACAS Xu*
 - Systems in which the network is just a component?
 - Collaboration with various industrial partners
Ongoing Work in the Reluplex Project (cnt’d)

- More expressiveness
 - Handle non piece-wise linear activation functions?
- Case studies
 - More extensive verification of ACAS Xu
 - Systems in which the network is just a component?
 - Collaboration with various industrial partners.
Thank You!

Questions
Measuring Neural Net Robustness with Constraints.

N. Carlini, G. Katz, C. Barrett, and D. Dill.

C. Cheng, G. Nührenberg, and H. Ruess.
Maximum Resilience of Artificial Neural Networks.

C. Cheng, G. Nührenberg, and H. Ruess.
Verification of Binarized Neural Networks, 2017.

N. Carlini and D. Wagner.
Towards Evaluating the Robustness of Neural Networks.

Training Verified Learners with Learned Verifiers, 2018.

S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari.
Output Range Analysis for Deep Feedforward Neural.

R. Ehlers.
Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks.
DeepSafe: A Data-Driven Approach for Assessing Robustness of Neural Networks.
In Proc. 16th Int. Symp. on Automated Technology for Verification and Analysis (ATVA), 2018.
To appear.

T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri, and M. Vechev.
AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation.

M. Hein and M. Andriushchenko.
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation.

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu.
Safety Verification of Deep Neural Networks.

Verification and Validation of Neural Networks for Safety-Critical Applications.

Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks.

Towards Proving the Adversarial Robustness of Deep Neural Networks.

A. Lomuscio and L. Maganti.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu.
Towards Deep Learning Models Resistant to Adversarial Attacks.
Verifying Properties of Binarized Deep Neural Networks.

L. Pulina and A. Tacchella.
An Abstraction-Refinement Approach to Verification of Artificial Neural Networks.

W. Ruan, X. Huang, and M. Kwiatkowska.
Reachability Analysis of Deep Neural Networks with Provable Guarantees.
In Proc. 27th Int. Joint Conf. on Artificial Intelligence (IJCAI), 2018.

A. Raghunathan, J. Steinhardt, and P. Liang.
Certified Defenses against Adversarial Examples.
In Proc. 6th Int. Conf. on Learning Representations (ICLR), 2018.

W. Ruan, M. Wu, Y. Sun, X. Huang, D. Kroening, and M. Kwiatkowska.

V. Tjeng and R. Tedrake.
Evaluating Robustness of Neural Networks with Mixed Integer Programming, 2017.

Towards Fast Computation of Certified Robustness for ReLU Networks.
In Proc. 35th Int. Conf. on Machine Learning (ICML), 2018.

W. Xiang, H. Tran, and T. Johnson.
Output Reachable Set Estimation and Verification for Multi-Layer Neural Networks.

IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2018.